A deep learning model based on contrast-enhanced computed tomography for differential diagnosis of gallbladder carcinoma

医学 胆囊癌 置信区间 胆囊 接收机工作特性 放射科 优势比 人工智能 内科学 计算机科学
作者
Xiang Fei,Qingtao Meng,Jingjing Deng,Jie Wang,Xiaoyuan Liang,Xingyu Liu,Sheng Yan
出处
期刊:Hepatobiliary & Pancreatic Diseases International [Elsevier BV]
卷期号:23 (4): 376-384 被引量:4
标识
DOI:10.1016/j.hbpd.2023.04.001
摘要

Gallbladder carcinoma (GBC) is highly malignant, and its early diagnosis remains difficult. This study aimed to develop a deep learning model based on contrast-enhanced computed tomography (CT) images to assist radiologists in identifying GBC.We retrospectively enrolled 278 patients with gallbladder lesions (> 10 mm) who underwent contrast-enhanced CT and cholecystectomy and divided them into the training (n = 194) and validation (n = 84) datasets. The deep learning model was developed based on ResNet50 network. Radiomics and clinical models were built based on support vector machine (SVM) method. We comprehensively compared the performance of deep learning, radiomics, clinical models, and three radiologists.Three radiomics features including LoG_3.0 gray-level size zone matrix zone variance, HHL first-order kurtosis, and LHL gray-level co-occurrence matrix dependence variance were significantly different between benign gallbladder lesions and GBC, and were selected for developing radiomics model. Multivariate regression analysis revealed that age ≥ 65 years [odds ratios (OR) = 4.4, 95% confidence interval (CI): 2.1-9.1, P < 0.001], lesion size (OR = 2.6, 95% CI: 1.6-4.1, P < 0.001), and CA-19-9 > 37 U/mL (OR = 4.0, 95% CI: 1.6-10.0, P = 0.003) were significant clinical risk factors of GBC. The deep learning model achieved the area under the receiver operating characteristic curve (AUC) values of 0.864 (95% CI: 0.814-0.915) and 0.857 (95% CI: 0.773-0.942) in the training and validation datasets, which were comparable with radiomics, clinical models and three radiologists. The sensitivity of deep learning model was the highest both in the training [90% (95% CI: 82%-96%)] and validation [85% (95% CI: 68%-95%)] datasets.The deep learning model may be a useful tool for radiologists to distinguish between GBC and benign gallbladder lesions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
平常以丹发布了新的文献求助10
1秒前
amo完成签到,获得积分0
2秒前
堃kun发布了新的文献求助20
2秒前
启程完成签到,获得积分10
2秒前
2秒前
3秒前
一昂杨完成签到,获得积分10
3秒前
左边向北发布了新的文献求助10
3秒前
3秒前
风清扬应助wanci采纳,获得20
3秒前
XIX发布了新的文献求助10
3秒前
我来电了完成签到,获得积分10
3秒前
Owen应助just采纳,获得10
3秒前
xx完成签到,获得积分10
4秒前
4秒前
ercha完成签到,获得积分10
5秒前
5秒前
6秒前
林林完成签到,获得积分10
6秒前
D33sama完成签到,获得积分10
7秒前
7秒前
asdfqwer发布了新的文献求助10
8秒前
lucky完成签到,获得积分10
8秒前
8秒前
Hello应助霸气曼雁采纳,获得10
8秒前
嘟嘟发布了新的文献求助10
8秒前
yhhzz2发布了新的文献求助10
8秒前
阿媛呐完成签到,获得积分10
9秒前
皮卡猪完成签到 ,获得积分10
9秒前
10秒前
xs发布了新的文献求助10
10秒前
舒服的曼云完成签到,获得积分10
11秒前
orangel完成签到,获得积分10
11秒前
11秒前
Zetlynn完成签到,获得积分10
11秒前
FashionBoy应助XIX采纳,获得10
12秒前
tododoto完成签到,获得积分10
12秒前
香蕉觅云应助ff采纳,获得10
12秒前
Sarah完成签到,获得积分10
12秒前
awen发布了新的文献求助10
12秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Plutonium Handbook 1000
Three plays : drama 1000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Semantics for Latin: An Introduction 999
Psychology Applied to Teaching 14th Edition 600
Robot-supported joining of reinforcement textiles with one-sided sewing heads 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4092657
求助须知:如何正确求助?哪些是违规求助? 3631418
关于积分的说明 11509690
捐赠科研通 3342272
什么是DOI,文献DOI怎么找? 1837095
邀请新用户注册赠送积分活动 904928
科研通“疑难数据库(出版商)”最低求助积分说明 822708