锭
液相线
材料科学
冶金
收缩率
产量(工程)
连铸
流量(数学)
合金
机械
复合材料
物理
作者
Neda Ghodrati,Mounir Baiteche,Abdelhalim Loucif,Paloma Isabel Gallego,Jean-Benoît Morin,Mohammad Jahazi
出处
期刊:Metals
[MDPI AG]
日期:2022-11-07
卷期号:12 (11): 1906-1906
被引量:9
摘要
The effect of the hot top height on the formation of positive and negative macrosegregation patterns, the ingot quality, and the material yield during solidification of a 12 MT cast ingot made of a Cr-Mo-low alloy steel was investigated. A 3D numerical simulation of the process was conducted using finite element modeling. A full-size 12 MT ingot was cut off from its center in the longitudinal direction, and a large cross-section was sliced into small samples. The chemical mapping of all the elements in the steel composition was obtained for all samples and compared with the model predictions for validation purposes. The influence of the increase in hot top height on the liquid metal velocity field, size and shape of vortexes, cooling rate of the liquid, and liquidus temperature was determined. Results revealed that increasing the hot top height by 165 mm increased the solidification time, fluid velocity in regions including the hot top and ingot bottom, and decreased the local liquidus temperature. The combination of all the above resulted in an overall decrease in positive and negative macrosegregation of more than 6% and an increase in ingot quality. The results are interpreted based on the interactions between the transport of solute and heat coupled with the flow driven by thermo-solutal convection and shrinkage-induced flow.
科研通智能强力驱动
Strongly Powered by AbleSci AI