Deep lexical hypothesis: Identifying personality structure in natural language.

形容词 自然语言处理 心理信息 人工智能 心理学 心理语言学 计算机科学 集合(抽象数据类型) 自然语言 语言学 神经质 认知心理学 人格 名词 社会心理学 认知 程序设计语言 法学 神经科学 哲学 梅德林 政治学
作者
Andrew Cutler,David M. Condon
出处
期刊:Journal of Personality and Social Psychology [American Psychological Association]
标识
DOI:10.1037/pspp0000443
摘要

Recent advances in natural language processing (NLP) have produced general models that can perform complex tasks such as summarizing long passages and translating across languages. Here, we introduce a method to extract adjective similarities from language models as done with survey-based ratings in traditional psycholexical studies but using millions of times more text in a natural setting. The correlational structure produced through this method is highly similar to that of self- and other-ratings of 435 English terms reported by Saucier and Goldberg (1996a). The first three unrotated factors produced using NLP are congruent with those in survey data, with coefficients of 0.89, 0.79, and 0.79. This structure is robust to many modeling decisions: adjective set, including those with 1,710 (Goldberg, 1982) and 18,000 English terms (Allport & Odbert, 1936); the query used to extract correlations; and language model. Notably, Neuroticism and Openness are only weakly and inconsistently recovered. This is a new source of signal that is closer to the original (semantic) vision of the lexical hypothesis. The method can be applied where surveys cannot: in dozens of languages simultaneously, with tens of thousands of items, on historical text, and at extremely large scale for little cost. The code is made public to facilitate reproduction and fast iteration in new directions of research. (PsycInfo Database Record (c) 2022 APA, all rights reserved).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
ZDD发布了新的文献求助10
1秒前
SYLH应助默默诗筠采纳,获得10
2秒前
狄谷南完成签到,获得积分10
2秒前
又夏完成签到,获得积分10
2秒前
2秒前
充电宝应助voifhpg采纳,获得10
3秒前
3秒前
3秒前
labern发布了新的文献求助10
3秒前
在下废物完成签到,获得积分20
3秒前
酷波er应助忧虑的盼山采纳,获得10
3秒前
小贩完成签到,获得积分10
4秒前
YXG发布了新的文献求助30
4秒前
科研通AI2S应助摸鱼ing采纳,获得10
5秒前
丘比特应助crishh采纳,获得10
5秒前
5秒前
clayluo发布了新的文献求助10
5秒前
科研通AI2S应助猪猪hero采纳,获得10
6秒前
随风发布了新的文献求助10
6秒前
田様应助开心之王采纳,获得10
6秒前
cassie完成签到,获得积分10
7秒前
7秒前
闪闪岩完成签到,获得积分10
7秒前
NexusExplorer应助夕荀采纳,获得10
8秒前
8秒前
8秒前
8秒前
8秒前
iNk应助要减肥冰菱采纳,获得20
9秒前
9秒前
稳重蜗牛完成签到,获得积分10
9秒前
zuizui发布了新的文献求助10
9秒前
小石头完成签到,获得积分10
9秒前
10秒前
繁荣的柏柳完成签到,获得积分0
10秒前
樊孟完成签到,获得积分10
11秒前
11秒前
11秒前
Mannose完成签到,获得积分10
11秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
System of systems: When services and products become indistinguishable 300
How to carry out the process of manufacturing servitization: A case study of the red collar group 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3812149
求助须知:如何正确求助?哪些是违规求助? 3356590
关于积分的说明 10382821
捐赠科研通 3073708
什么是DOI,文献DOI怎么找? 1688425
邀请新用户注册赠送积分活动 812137
科研通“疑难数据库(出版商)”最低求助积分说明 766960