形容词
自然语言处理
心理信息
人工智能
心理学
心理语言学
计算机科学
集合(抽象数据类型)
自然语言
语言学
神经质
认知心理学
人格
名词
社会心理学
认知
程序设计语言
法学
神经科学
哲学
梅德林
政治学
作者
Andrew Cutler,David M. Condon
摘要
Recent advances in natural language processing (NLP) have produced general models that can perform complex tasks such as summarizing long passages and translating across languages. Here, we introduce a method to extract adjective similarities from language models as done with survey-based ratings in traditional psycholexical studies but using millions of times more text in a natural setting. The correlational structure produced through this method is highly similar to that of self- and other-ratings of 435 English terms reported by Saucier and Goldberg (1996a). The first three unrotated factors produced using NLP are congruent with those in survey data, with coefficients of 0.89, 0.79, and 0.79. This structure is robust to many modeling decisions: adjective set, including those with 1,710 (Goldberg, 1982) and 18,000 English terms (Allport & Odbert, 1936); the query used to extract correlations; and language model. Notably, Neuroticism and Openness are only weakly and inconsistently recovered. This is a new source of signal that is closer to the original (semantic) vision of the lexical hypothesis. The method can be applied where surveys cannot: in dozens of languages simultaneously, with tens of thousands of items, on historical text, and at extremely large scale for little cost. The code is made public to facilitate reproduction and fast iteration in new directions of research. (PsycInfo Database Record (c) 2022 APA, all rights reserved).
科研通智能强力驱动
Strongly Powered by AbleSci AI