Plant Disease Diagnosis Using Deep Learning Based on Aerial Hyperspectral Images: A Review

高光谱成像 计算机科学 深度学习 植物病害 人工智能 工作流程 精准农业 遥感 机器学习 农业 地理 生物技术 数据库 生物 考古
作者
Lukas Wiku Kuswidiyanto,Hyun Ho Noh,Xiongzhe Han
出处
期刊:Remote Sensing [Multidisciplinary Digital Publishing Institute]
卷期号:14 (23): 6031-6031 被引量:46
标识
DOI:10.3390/rs14236031
摘要

Plant diseases cause considerable economic loss in the global agricultural industry. A current challenge in the agricultural industry is the development of reliable methods for detecting plant diseases and plant stress. Existing disease detection methods mainly involve manually and visually assessing crops for visible disease indicators. The rapid development of unmanned aerial vehicles (UAVs) and hyperspectral imaging technology has created a vast potential for plant disease detection. UAV-borne hyperspectral remote sensing (HRS) systems with high spectral, spatial, and temporal resolutions have replaced conventional manual inspection methods because they allow for more accurate cost-effective crop analyses and vegetation characteristics. This paper aims to provide an overview of the literature on HRS for disease detection based on deep learning algorithms. Prior articles were collected using the keywords “hyperspectral”, “deep learning”, “UAV”, and “plant disease”. This paper presents basic knowledge of hyperspectral imaging, using UAVs for aerial surveys, and deep learning-based classifiers. Generalizations about workflow and methods were derived from existing studies to explore the feasibility of conducting such research. Results from existing studies demonstrate that deep learning models are more accurate than traditional machine learning algorithms. Finally, further challenges and limitations regarding this topic are addressed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
缥缈的紫文完成签到,获得积分10
1秒前
ziyuexu发布了新的文献求助10
3秒前
南浔发布了新的文献求助10
3秒前
3秒前
万能图书馆应助余潇潇采纳,获得10
3秒前
传奇3应助鹏程采纳,获得10
4秒前
水凝胶发布了新的文献求助10
4秒前
科yt完成签到,获得积分10
5秒前
5秒前
研友_VZG7GZ应助布坎南采纳,获得10
7秒前
hhhh发布了新的文献求助10
7秒前
7秒前
orixero应助ziyuexu采纳,获得10
7秒前
8秒前
8秒前
9秒前
莉莉安发布了新的文献求助10
10秒前
11秒前
11秒前
长江完成签到 ,获得积分10
11秒前
13秒前
bkagyin应助嘎嘎的鸡神采纳,获得10
14秒前
Jonathan发布了新的文献求助10
14秒前
生动的大地完成签到,获得积分10
16秒前
余潇潇发布了新的文献求助10
16秒前
起风发布了新的文献求助10
16秒前
科目三应助天真的秋翠采纳,获得10
18秒前
19秒前
小刘科研顺利应助zorro3574采纳,获得10
19秒前
19秒前
20秒前
Earl完成签到,获得积分10
20秒前
酷波er应助阿呆采纳,获得10
21秒前
九敏完成签到,获得积分10
22秒前
科研通AI5应助锋feng采纳,获得10
24秒前
25秒前
han完成签到 ,获得积分10
25秒前
吴怀硕发布了新的文献求助10
25秒前
25秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3819001
求助须知:如何正确求助?哪些是违规求助? 3362082
关于积分的说明 10415374
捐赠科研通 3080404
什么是DOI,文献DOI怎么找? 1694452
邀请新用户注册赠送积分活动 814631
科研通“疑难数据库(出版商)”最低求助积分说明 768382