Deep learning for P-wave first-motion polarity determination and its application in focal mechanism inversion

反演(地质) 机制(生物学) 极性(国际关系) 计算机科学 地质学 遥感 人工智能 物理 地震学 遗传学 量子力学 生物 细胞 构造学
作者
Yangkang Chen,Omar M. Saad,Alexandros Savvaidis,Fangxue Zhang,Yunfeng Chen,Dino Huang,Huijian Li,Farzaneh Aziz Zanjani
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-11 被引量:3
标识
DOI:10.1109/tgrs.2024.3407060
摘要

The focal mechanism provides seismological constraints on the geological faults that generate the earthquakes and thus is important for regional seismotectonic research. Focal mechanism calculation based on the P-wave first-motion-polarity is a widely used method, particularly helpful for small to moderate-size earthquakes. However, determining the P-wave first-motion polarity can be challenging and subjective for smaller earthquakes. Here, we propose a deep-learning method (EQpolarity) for determining the P-wave first-motion polarity using the vertical-component seismic waveforms. The proposed deep-learning method was trained using a large-scale dataset from South California and then adapted to the Texas earthquake data via a transfer learning method. The original and secondary models obtained 95.43% and 98.82% accuracy on the Texas database, respectively, indicating the effectiveness of transfer learning. We further apply the deep learning method to thousands of events on the TexNet catalog to determine the focal mechanisms. Most of the focal mechanism solutions align well with the strikes, dips, and rakes of the known faults that were explored previously using full-waveform-based methods. The generation of the large focal mechanism database offers significant insights into the seismotectonic status of West Texas. The open-source package of EQpolarity can be accessed at https://github.com/chenyk1990/eqpolarity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助慈祥的绮采纳,获得10
刚刚
纯情的山河完成签到,获得积分10
1秒前
kytwenxian完成签到,获得积分0
2秒前
西乡塘塘主完成签到,获得积分10
2秒前
闪闪完成签到 ,获得积分10
4秒前
电催化CYY完成签到,获得积分10
5秒前
小红书求接接接接一篇完成签到,获得积分20
5秒前
7秒前
mmz完成签到 ,获得积分10
7秒前
8秒前
8秒前
8秒前
小橙子完成签到,获得积分10
9秒前
10秒前
Ryan完成签到,获得积分20
10秒前
正值清白之年完成签到,获得积分10
11秒前
xd发布了新的文献求助10
11秒前
12秒前
悦耳静枫发布了新的文献求助30
13秒前
Jasper应助kkkl采纳,获得10
13秒前
13秒前
科目三应助闻闻采纳,获得10
14秒前
Qovn完成签到,获得积分10
14秒前
netrandwalk完成签到,获得积分10
15秒前
tian完成签到 ,获得积分10
15秒前
Ryan发布了新的文献求助10
16秒前
17秒前
17秒前
streetpants发布了新的文献求助10
18秒前
科研通AI5应助麦子采纳,获得10
19秒前
陈嘻嘻完成签到 ,获得积分10
20秒前
21秒前
21秒前
wanci应助花誓lydia采纳,获得10
22秒前
22秒前
Lee发布了新的文献求助50
23秒前
ABCDEFG发布了新的文献求助30
24秒前
受伤问凝完成签到 ,获得积分10
25秒前
怡然的乘风完成签到 ,获得积分10
25秒前
25秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3789499
求助须知:如何正确求助?哪些是违规求助? 3334519
关于积分的说明 10270310
捐赠科研通 3050937
什么是DOI,文献DOI怎么找? 1674263
邀请新用户注册赠送积分活动 802535
科研通“疑难数据库(出版商)”最低求助积分说明 760742