Optimizing Wastewater Treatment Plant Operational Efficiency Through Integrating Machine Learning Predictive Models and Advanced Control Strategies

模型预测控制 水准点(测量) 污水处理 流出物 预测建模 计算机科学 前馈 工程类 工艺工程 机器学习 人工智能 控制工程 控制(管理) 环境工程 大地测量学 地理
作者
Aparna K.G.,R. Swarnalatha,Murchana Changmai
出处
期刊:Chemical Engineering Research & Design [Elsevier BV]
卷期号:188: 995-1008 被引量:4
标识
DOI:10.1016/j.psep.2024.05.148
摘要

This research optimizes wastewater treatment plant (WWTP) operational performance by integrating advanced control strategies and predictive modeling. Emphasizing the significance of machine learning (ML), feature extraction techniques (filter, wrapper, and embedded methods) were employed to develop robust prediction models. The random forest (RF) model was applied to predict target variables, effluent ammonia, and nitrogen concentrations. Integrating these predictive models into the WWTP's control system is necessary for enhanced efficiency and pollution regulation. Benchmark Simulation Model 1 (BSM1) was used as the WWTP model. The two tested control strategies included a hybrid approach, combining feedforward and feedback control, resulting in an improved effluent quality index (EQI), a marginal increase in aeration energy (AE) and the operational cost index (OCI), and a significant decrease in effluent ammonia concentration. The second strategy utilized self-organizing fuzzy inference system (SOFIS) control, resulting in promising outcomes with improvements in EQI, ammonia, and nitrogen concentrations, with negligible increases in AE and OCI. The findings highlight the pivotal role of predicting effluent quality parameters and integrating the prediction into WWTP control systems. This integrated approach proves effective in optimizing pollutant regulation and overall system performance. The research provides insights into the practical implementation of ML-based control strategies in wastewater treatment. It offers future scope for exploring advanced ML algorithms and their real-time application in operational WWTPs. This research introduces a novel approach by integrating machine learning with the BSM1 weather dataset and sensor data for feature selection to predict effluent concentrations in a WWTP. Through the comparative analysis with the default proportional-integral (PI) control configuration, the research highlights the importance of integrating machine learning techniques into WWTP control systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
侯楠发布了新的文献求助10
1秒前
梓歆发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
1秒前
1秒前
渣渣鼠应助Singularity采纳,获得10
1秒前
2秒前
tttttttttt完成签到 ,获得积分10
2秒前
biozy完成签到,获得积分10
2秒前
2秒前
Biohacking完成签到,获得积分10
2秒前
小奶发布了新的文献求助10
2秒前
2秒前
地瓜完成签到,获得积分10
3秒前
3秒前
4秒前
AiX-zzzzz完成签到,获得积分10
5秒前
5秒前
寒冷豆芽完成签到 ,获得积分10
5秒前
你猜完成签到,获得积分10
6秒前
6秒前
灰灰发布了新的文献求助20
6秒前
yar应助温婉的慕凝采纳,获得10
6秒前
6秒前
Jasper应助Frankyu采纳,获得30
6秒前
6秒前
科研通AI2S应助linkman采纳,获得10
7秒前
ljydhr发布了新的文献求助10
7秒前
hejinjin完成签到,获得积分10
7秒前
7秒前
8秒前
英俊的铭应助妮儿采纳,获得10
8秒前
归仔发布了新的文献求助10
8秒前
Glacier完成签到,获得积分10
8秒前
哈哈哈发布了新的文献求助10
9秒前
聚合怪完成签到,获得积分10
9秒前
王利宾完成签到,获得积分10
9秒前
淡淡绮琴发布了新的文献求助10
10秒前
10秒前
AiX-zzzzz发布了新的文献求助10
11秒前
张凯丽完成签到,获得积分10
11秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Effective Learning and Mental Wellbeing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3974463
求助须知:如何正确求助?哪些是违规求助? 3518823
关于积分的说明 11196212
捐赠科研通 3255008
什么是DOI,文献DOI怎么找? 1797655
邀请新用户注册赠送积分活动 877052
科研通“疑难数据库(出版商)”最低求助积分说明 806130