A Sentimental Prompt Framework with Visual Text Encoder for Multimodal Sentiment Analysis

计算机科学 情绪分析 编码器 代表(政治) 社会化媒体 图像(数学) 人工智能 自然语言处理 源代码 可视化 模态(人机交互) 编码(集合论) 自编码 深度学习 情报检索 万维网 操作系统 集合(抽象数据类型) 程序设计语言 法学 政治 政治学
作者
Shizhou Huang,Bo Xu,Changqun Li,Jiabo Ye,Xin Lin
标识
DOI:10.1145/3652583.3658115
摘要

Recently, multimodal sentiment analysis from social media posts has received increasing attention, as it can effectively improve single-modality-based sentiment analysis by leveraging the complementary information between text and images. Despite their success, current methods still suffer from two weaknesses: (1) the current methods for obtaining image representations do not obtain sentiment information, which leads to a significant gap between image representations and results; (2) the current methods ignore the sentiments expressed by the symbols (emoticons, emojis) in the text, but these symbols can effectively reflect the user's sentiments. To address these issues, we propose a sentimental prompt framework with visual text encoder (SPFVTE). Specifically, for the first problem, instead of using the image representation directly, we project the image representation as a prompt and utilize the prompt learning to capture sentimental information in images by learning a sentiment-specific prompt. For the second problem, considering that people get the meanings of emojis and emoticons from their graphics, we propose to render the text as an image and use a visual text encoder to capture the sentiments contained in emojis and emoticons. We have conducted experiments on three public multimodal sentiment datasets, and the experimental results show that our method can significantly and consistently outperform the state-of-the-art methods. The datasets and source code can be found at https://github.com/JinFish/SPFVTE.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小马甲应助科研通管家采纳,获得10
1秒前
Owen应助科研通管家采纳,获得10
2秒前
热心市民应助科研通管家采纳,获得10
2秒前
2秒前
可爱的函函应助蒙豆儿采纳,获得10
2秒前
lemon发布了新的文献求助10
4秒前
6秒前
jun发布了新的文献求助20
7秒前
helium发布了新的文献求助10
7秒前
科研通AI5应助青鸟采纳,获得10
9秒前
Orange应助jmchen采纳,获得10
9秒前
万能图书馆应助赫连紫采纳,获得10
9秒前
lee发布了新的文献求助10
10秒前
10秒前
Olivia发布了新的文献求助10
11秒前
view关注了科研通微信公众号
12秒前
科研通AI5应助飘逸书易采纳,获得10
12秒前
传奇3应助MrX采纳,获得10
12秒前
bkagyin应助Os1采纳,获得30
15秒前
mmmm完成签到,获得积分10
15秒前
15秒前
JamesPei应助Conccuc采纳,获得10
16秒前
17秒前
Lds发布了新的文献求助10
18秒前
19秒前
绿毛怪完成签到,获得积分10
19秒前
helium完成签到,获得积分10
19秒前
宋琪琪完成签到,获得积分10
20秒前
21秒前
七七七发布了新的文献求助10
21秒前
21秒前
莫道雪落奈何完成签到,获得积分10
22秒前
循环bug发布了新的文献求助10
22秒前
丘比特应助自然松采纳,获得10
23秒前
24秒前
25秒前
飘逸书易发布了新的文献求助10
27秒前
view发布了新的文献求助10
28秒前
科研通AI5应助w123采纳,获得10
28秒前
29秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Hydropower Nation: Dams, Energy, and Political Changes in Twentieth-Century China 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Pharmacological profile of sulodexide 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3805349
求助须知:如何正确求助?哪些是违规求助? 3350319
关于积分的说明 10348395
捐赠科研通 3066218
什么是DOI,文献DOI怎么找? 1683622
邀请新用户注册赠送积分活动 809099
科研通“疑难数据库(出版商)”最低求助积分说明 765225