清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A study on diversion behavior in weaving segments: Individualized traffic conflict prediction and causal mechanism analysis

机制(生物学) 编织 计算机科学 心理学 工程类 机械工程 认识论 哲学
作者
Renteng Yuan,Qiaojun Xiang,Qiaojun Xiang
出处
期刊:Accident Analysis & Prevention [Elsevier BV]
卷期号:205: 107681-107681 被引量:1
标识
DOI:10.1016/j.aap.2024.107681
摘要

Lane change behavior disrupts traffic flow and increases the potential for traffic conflicts, especially on expressway weaving segments. Focusing on the diversion process, this study incorporating individual driving patterns into conflict prediction and causation analysis can help develop individualized intervention measures to avoid risky diversion behaviors. First, to minimize measurement errors, this study introduces a lane line reconstruction method. Second, several unsupervised clustering methods, including k-means, agglomerative clustering, gaussian mixture, and spectral clustering, are applied to explore diversion patterns. Moreover, machine learning methods, including Convolutional Neural Networks (CNN), Long Short-Term Memory (LSTM), Attention-based LSTM, eXtreme Gradient Boosting (XGB), Support Vector Machine (SVM), and Multilayer Perceptron (MLP), are employed for real-time traffic conflict prediction. Finally, mixed logit models are developed using pre-conflict condition data to investigate the causal mechanisms of traffic conflicts. The results indicate that the K-means algorithm with four clusters exhibits the highest Calinski-Harabasz and Silhouette scores and the lowest Davies-Bouldin scores. With superior classification accuracy and generalization ability, the LSTM is used to develop the personalized traffic conflict prediction model. Sensitivity analysis indicates that incorporating the diversion patterns into the LSTM model results in an improvement of 3.64% in Accuracy, 7.15% in Precision, and 1.34% in Recall. Results from the four mixed logit models indicate significant differences in factors contributing to traffic conflicts within each diversion pattern. For instance, increasing the speed difference between the target vehicle and the right preceding vehicle benefits traffic conflict during acceleration diversions but decreases the likelihood of traffic conflicts during deceleration diversions. These results can help traffic engineers propose individualized solutions to reduce unsafe diversion behavior.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
23秒前
celia完成签到 ,获得积分10
30秒前
lhn完成签到 ,获得积分10
34秒前
木木发布了新的文献求助10
43秒前
Axs完成签到,获得积分10
59秒前
四叶草完成签到 ,获得积分10
1分钟前
SH123完成签到 ,获得积分10
1分钟前
woods完成签到,获得积分10
1分钟前
跳脚的虾完成签到 ,获得积分10
1分钟前
bc应助woods采纳,获得30
1分钟前
紫陌完成签到,获得积分10
1分钟前
Ray完成签到 ,获得积分10
1分钟前
火星上惜天完成签到 ,获得积分10
1分钟前
1分钟前
李佳倩完成签到 ,获得积分10
1分钟前
科研小白完成签到,获得积分10
1分钟前
但大图完成签到 ,获得积分10
2分钟前
aa完成签到 ,获得积分10
2分钟前
2分钟前
开放访天完成签到 ,获得积分10
2分钟前
梅一一完成签到,获得积分10
2分钟前
Nniu完成签到 ,获得积分10
2分钟前
科研通AI5应助djbj2022采纳,获得10
2分钟前
ccc完成签到 ,获得积分10
2分钟前
坦率的从波完成签到 ,获得积分10
2分钟前
GealAntS完成签到,获得积分0
2分钟前
真真完成签到 ,获得积分10
2分钟前
2分钟前
xy完成签到 ,获得积分10
2分钟前
阿弥陀佛完成签到,获得积分10
2分钟前
2分钟前
vidgers完成签到 ,获得积分10
2分钟前
djbj2022发布了新的文献求助10
2分钟前
huanghe完成签到,获得积分10
2分钟前
自由的无色完成签到 ,获得积分10
2分钟前
吃鱼骨头的猫完成签到,获得积分10
2分钟前
HY完成签到 ,获得积分10
3分钟前
HeLL0完成签到 ,获得积分10
3分钟前
MM完成签到 ,获得积分10
3分钟前
自觉石头完成签到 ,获得积分10
3分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3788347
求助须知:如何正确求助?哪些是违规求助? 3333722
关于积分的说明 10263216
捐赠科研通 3049616
什么是DOI,文献DOI怎么找? 1673639
邀请新用户注册赠送积分活动 802120
科研通“疑难数据库(出版商)”最低求助积分说明 760511