已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Automatic sleep scoring for real-time monitoring and stimulation in individuals with and without sleep apnea

计算机科学 睡眠(系统调用) 可穿戴计算机 脑电图 睡眠呼吸暂停 人口 人工智能 卷积神经网络 机器学习 医学 心理学 神经科学 操作系统 环境卫生 心脏病学 嵌入式系统
作者
Martín Esparza-Iaizzo,María Sierra-Torralba,Jens G. Klinzing,Javier Mínguez,Luis Montesano,Eduardo López‐Larraz
标识
DOI:10.1101/2024.06.12.597764
摘要

Digital therapeutics, enabled by advanced machine learning algorithms and medical wearable devices, offer a promising approach to streamline diagnostics and improve access to healthcare. Within this framework, automatic sleep scoring can provide accurate and efficient sleep analysis from electrophysiological signals recorded with wearable sensors, such as electroencephalography (EEG). However, the optimal configuration and temporal dynamics of automatic sleep scoring systems remain unclear, especially concerning their performance across different population samples. This study systematically investigates the impact of electrode setup, temporal scope, and population characteristics on the performance of automatic sleep scoring algorithms. Utilizing a convolutional neural network (CNN) model, we analyzed various electrode configurations and temporal dynamics using datasets comprising both healthy participants and individuals with sleep apnea. Our findings reveal that sleep scoring based on a single frontal EEG channel demonstrates reliable congruency with human expert scorers, with minimal improvement observed with additional sensors. Moreover, we demonstrate that real-time sleep scoring can be achieved with comparable accuracy to offline methods, which rely on past and future information to classify a window of interest. Remarkably, a notable reduction in decoding accuracy is observed for individuals with sleep disorders compared to healthy participants, highlighting the challenges inherent in accurately assessing sleep stages in clinical populations. Digital solutions for automatic sleep scoring hold promise for facilitating timely diagnoses and personalized treatment plans, with applications extending beyond sleep analysis to include closed-loop neurostimulation interventions. Our findings provide valuable insights into the complexities of automatic sleep scoring and offer considerations for the development of effective and efficient sleep assessment tools in both clinical and research settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
22222发布了新的文献求助10
刚刚
FIN发布了新的文献求助60
3秒前
3秒前
5秒前
打打应助SophiaMX采纳,获得10
6秒前
郭氧化氢发布了新的文献求助10
7秒前
llll发布了新的文献求助10
7秒前
思源应助鸣蜩阿六采纳,获得10
7秒前
刘谦益发布了新的文献求助10
8秒前
9秒前
朱光辉发布了新的文献求助10
13秒前
15秒前
Akim应助俏皮的一德采纳,获得10
15秒前
学术小垃圾应助llll采纳,获得10
16秒前
搜集达人应助科研通管家采纳,获得10
18秒前
酷波er应助科研通管家采纳,获得10
18秒前
大个应助科研通管家采纳,获得10
18秒前
18秒前
18秒前
搜集达人应助科研通管家采纳,获得10
18秒前
18秒前
奥真奈美77完成签到 ,获得积分10
20秒前
21秒前
Owen应助热心的林采纳,获得10
22秒前
慕瓜完成签到 ,获得积分10
25秒前
瑾sir发布了新的文献求助10
25秒前
27秒前
29秒前
呆萌的鸿煊完成签到,获得积分10
30秒前
32秒前
默默灭绝完成签到 ,获得积分10
36秒前
36秒前
lyy完成签到 ,获得积分10
38秒前
38秒前
彭于晏应助木子采纳,获得10
39秒前
39秒前
完美世界应助满意尔安采纳,获得10
40秒前
orixero应助满意尔安采纳,获得10
40秒前
科研通AI6应助满意尔安采纳,获得10
40秒前
diaiyi发布了新的文献求助10
42秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Revision of the Australian Thynnidae and Tiphiidae (Hymenoptera) 500
Instant Bonding Epoxy Technology 500
Pipeline Integrity Management Under Geohazard Conditions (PIMG) 500
Methodology for the Human Sciences 500
DEALKOXYLATION OF β-CYANOPROPIONALDEYHDE DIMETHYL ACETAL 400
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4357143
求助须知:如何正确求助?哪些是违规求助? 3860021
关于积分的说明 12042728
捐赠科研通 3501665
什么是DOI,文献DOI怎么找? 1921700
邀请新用户注册赠送积分活动 964129
科研通“疑难数据库(出版商)”最低求助积分说明 863648