Automated detection of pavement distress based on enhanced YOLOv8 and synthetic data with textured background modeling

环境科学
作者
Sicheng Wang,Benxin Cai,Weidong Wang,Zheng Li,Wenbo Hu,Bin Yan,Xianhua Liu
出处
期刊:Transportation geotechnics [Elsevier BV]
卷期号:48: 101304-101304
标识
DOI:10.1016/j.trgeo.2024.101304
摘要

Regular inspections of pavement distress are essential for accident prevention, and deep learning based algorithms have been developed to ensure high accuracy of inspections. However, the lack of available data is a critical challenge for existing algorithms. To address this issue, an elaborate image synthesis strategy is proposed. By combining textured background modeling for real pavement and Unreal Engine-based distress block stitching technique, high-resolution virtual images that are indistinguishable from real images are generated, including five types of pavement distresses. In addition, an enhanced YOLOv8 network utilizing synthetic data is designed in this paper. The enhanced YOLOv8 network is embedded with the Squeeze and Excitation attention module, and the Swin Transformer module, which are designed to distinguish different types of pavement distress accurately and suppress the interference of complex backgrounds (noise, shadow, blur). The results show that the performance of the algorithms trained based on appropriately ratios of synthetic data (2:1 ratio of virtual to real) improves by more than 10% compared with no virtual data. The enhanced YOLOv8 network achieves a Mean Average Precision (MAP) of 94.8% for transverse cracks, longitudinal cracks, cross-cracks, alligator cracks, and potholes, which is better than seven existing object detection models. The proposed image synthesis method can contribute to improving the accuracy and reliability of pavement inspection and alleviate the reliance on large number of distress samples collection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LY完成签到 ,获得积分10
1秒前
在水一方应助oo采纳,获得10
1秒前
2秒前
啊楠完成签到,获得积分10
2秒前
Yuting完成签到,获得积分10
3秒前
Yangbingang完成签到,获得积分10
3秒前
Membranes应助负责的方盒采纳,获得10
3秒前
3秒前
4秒前
4秒前
6秒前
可爱的函函应助About采纳,获得10
6秒前
Yuting发布了新的文献求助10
6秒前
6秒前
7秒前
mumu完成签到,获得积分10
7秒前
宝宝巴士发布了新的文献求助10
7秒前
8秒前
夕夕完成签到,获得积分10
8秒前
liu发布了新的文献求助10
9秒前
panrui发布了新的文献求助10
9秒前
赤赤发布了新的文献求助10
9秒前
jiang完成签到,获得积分10
9秒前
ding应助nature你真贵采纳,获得10
9秒前
10秒前
10秒前
橙啊程完成签到 ,获得积分10
11秒前
机灵芷容完成签到,获得积分10
11秒前
汉堡包应助蕃茄可乐采纳,获得10
11秒前
尙光完成签到,获得积分10
12秒前
五虎完成签到,获得积分10
12秒前
12秒前
FXT完成签到 ,获得积分10
12秒前
14秒前
苏易简完成签到,获得积分10
14秒前
14秒前
困困包完成签到,获得积分10
16秒前
紧张的斩发布了新的文献求助10
17秒前
英勇的碧蓉完成签到,获得积分10
17秒前
17秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 780
Logical form: From GB to Minimalism 500
2024-2030年中国石英材料行业市场竞争现状及未来趋势研判报告 500
镇江南郊八公洞林区鸟类生态位研究 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4150762
求助须知:如何正确求助?哪些是违规求助? 3686847
关于积分的说明 11647282
捐赠科研通 3380065
什么是DOI,文献DOI怎么找? 1854886
邀请新用户注册赠送积分活动 916829
科研通“疑难数据库(出版商)”最低求助积分说明 830656