Automated detection of pavement distress based on enhanced YOLOv8 and synthetic data with textured background modeling

环境科学
作者
Sicheng Wang,Benxin Cai,Weidong Wang,Zheng Li,Wenbo Hu,Bin Yan,Xianhua Liu
出处
期刊:Transportation geotechnics [Elsevier BV]
卷期号:48: 101304-101304
标识
DOI:10.1016/j.trgeo.2024.101304
摘要

Regular inspections of pavement distress are essential for accident prevention, and deep learning based algorithms have been developed to ensure high accuracy of inspections. However, the lack of available data is a critical challenge for existing algorithms. To address this issue, an elaborate image synthesis strategy is proposed. By combining textured background modeling for real pavement and Unreal Engine-based distress block stitching technique, high-resolution virtual images that are indistinguishable from real images are generated, including five types of pavement distresses. In addition, an enhanced YOLOv8 network utilizing synthetic data is designed in this paper. The enhanced YOLOv8 network is embedded with the Squeeze and Excitation attention module, and the Swin Transformer module, which are designed to distinguish different types of pavement distress accurately and suppress the interference of complex backgrounds (noise, shadow, blur). The results show that the performance of the algorithms trained based on appropriately ratios of synthetic data (2:1 ratio of virtual to real) improves by more than 10% compared with no virtual data. The enhanced YOLOv8 network achieves a Mean Average Precision (MAP) of 94.8% for transverse cracks, longitudinal cracks, cross-cracks, alligator cracks, and potholes, which is better than seven existing object detection models. The proposed image synthesis method can contribute to improving the accuracy and reliability of pavement inspection and alleviate the reliance on large number of distress samples collection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
thousandlong发布了新的文献求助10
1秒前
哈哈哈完成签到 ,获得积分10
3秒前
3秒前
11111完成签到 ,获得积分10
4秒前
guolllllli完成签到,获得积分10
4秒前
阿达发布了新的文献求助10
4秒前
Hello应助小小莫采纳,获得10
5秒前
核桃应助zzz采纳,获得10
6秒前
thousandlong完成签到,获得积分10
6秒前
7秒前
7秒前
西蓝花发布了新的文献求助10
8秒前
搜集达人应助cc采纳,获得10
8秒前
尉迟书兰完成签到 ,获得积分10
10秒前
乌冬面完成签到,获得积分10
12秒前
12秒前
多多的坨完成签到,获得积分10
13秒前
jiangcy发布了新的文献求助10
13秒前
君君发布了新的文献求助10
14秒前
吕吕完成签到,获得积分10
16秒前
50v50完成签到,获得积分10
16秒前
17秒前
18秒前
呵呵完成签到,获得积分10
18秒前
smart完成签到,获得积分10
20秒前
吕吕发布了新的文献求助10
20秒前
21秒前
小猴子发布了新的文献求助10
23秒前
机智马里奥完成签到,获得积分10
23秒前
尉迟书兰发布了新的文献求助10
25秒前
25秒前
wddddd完成签到,获得积分10
28秒前
夜安完成签到 ,获得积分10
28秒前
共享精神应助zc采纳,获得10
30秒前
30秒前
kimihee完成签到,获得积分10
30秒前
Lucas应助奶味蓝采纳,获得10
31秒前
悦耳依云完成签到,获得积分10
31秒前
wjkdxtt完成签到,获得积分20
34秒前
高分求助中
Africanfuturism: African Imaginings of Other Times, Spaces, and Worlds 3000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Exhibiting Chinese Art in Asia: Histories, Politics and Practices 700
1:500万中国海陆及邻区磁力异常图 600
相变热-动力学 520
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3897449
求助须知:如何正确求助?哪些是违规求助? 3441502
关于积分的说明 10821894
捐赠科研通 3166334
什么是DOI,文献DOI怎么找? 1749319
邀请新用户注册赠送积分活动 845284
科研通“疑难数据库(出版商)”最低求助积分说明 788552