清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Interpretation and Classification of Arrhythmia Using Deep Convolutional Network

计算机科学 人工智能 深度学习 特征(语言学) 机器学习 卷积神经网络 模式识别(心理学) 过程(计算) 数据挖掘 哲学 语言学 操作系统
作者
Prateek Singh,Ambalika Sharma
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:71: 1-12 被引量:24
标识
DOI:10.1109/tim.2022.3204316
摘要

Electrocardiogram signal analysis can be time-consuming, tedious, and error-prone. Therefore, automated analysis is need of time that will assist clinicians in detecting cardiac abnormalities accurately and efficiently. Recently, deep learning models have shown unprecedented progress and strong arrhythmia classification capabilities, but their deployment in the medical sector is constrained due to their “black-box” nature. This paper proposes a robust explainability method to assist in explaining the underlying decision-making process in deep neural networks (DNN) and help provide feedback on biases that would benefit in improving DNN models. To achieve these objectives, initially, a deep learning model is trained on the MIT-BIH Arrhythmia Database and their classification performance is evaluated. The classification findings are then interpreted using the post-hoc explanation methods such as the SHapley Additive exPlanations (SHAP), Local Interpretable Model-Agnostic Explanations (LIME) and Gradient-weighted Class Activation Mapping (Grad-CAM) that interpret the decision rationale. As these methods are initially proposed for image applications therefore a new masking approach is proposed to cater these post-hoc explainability methods for ECG time-series data. After evaluating these methods for ECG arrhythmia classification, several drawbacks are drawn such as they fail to locate a feature’s importance if there are multiple occurrences of the same feature in a signal and also, SHAP and LIME perform random perturbations that sometimes produce unreliable explanations. Therefore, to overcome the drawbacks associated with these post-hoc explainability methods on time-series data, a novel K-GradCam method is proposed. The proposed K-GradCam method ensemble the benefits of these gradient based and perturbation based approaches and has demonstrated advantages over SHAP, Grad-CAM and LIME in terms of interpreting the models’ decisions. To compare the the proposed technique with post-hoc explainability methods quantitatively, the confidence index of the proposed method is evaluated using dice loss. The proposed method shares 71% similarity with SHAP and 81% similarity with Grad-CAM methods; however, it shares the benefits of both methods and is computationally faster than SHAP and LIME.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助科研通管家采纳,获得10
2秒前
Akim应助科研通管家采纳,获得10
2秒前
jerry发布了新的文献求助10
5秒前
jerry完成签到,获得积分10
19秒前
33秒前
阿楠完成签到,获得积分10
36秒前
传奇3应助阿楠采纳,获得10
46秒前
泥泞完成签到 ,获得积分10
1分钟前
yuiip完成签到 ,获得积分10
1分钟前
领导范儿应助科研通管家采纳,获得10
2分钟前
我是老大应助liuliu0801采纳,获得10
2分钟前
2分钟前
爆米花应助施天问采纳,获得10
2分钟前
紫熊完成签到,获得积分10
2分钟前
2分钟前
汉堡包应助坦率的尔竹采纳,获得10
3分钟前
3分钟前
Eric800824完成签到 ,获得积分10
3分钟前
3分钟前
千里草完成签到,获得积分10
3分钟前
3分钟前
搜集达人应助科研通管家采纳,获得10
4分钟前
4分钟前
Wang完成签到 ,获得积分20
4分钟前
5分钟前
mito完成签到,获得积分10
5分钟前
我是笨蛋完成签到 ,获得积分10
5分钟前
sommmy完成签到,获得积分10
5分钟前
6分钟前
6分钟前
DocChen发布了新的文献求助10
6分钟前
foyefeng完成签到 ,获得积分0
6分钟前
Vesper完成签到 ,获得积分10
7分钟前
雪流星完成签到 ,获得积分10
7分钟前
空中风也完成签到 ,获得积分10
7分钟前
淡淡醉波wuliao完成签到 ,获得积分10
7分钟前
斯文败类应助sommmy采纳,获得10
7分钟前
Jasper应助科研通管家采纳,获得10
8分钟前
8分钟前
8分钟前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
Interpretability and Explainability in AI Using Python 200
SPECIAL FEATURES OF THE EXCHANGE INTERACTIONS IN ORTHOFERRITE-ORTHOCHROMITES 200
Null Objects from a Cross-Linguistic and Developmental Perspective 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3833846
求助须知:如何正确求助?哪些是违规求助? 3376298
关于积分的说明 10492573
捐赠科研通 3095843
什么是DOI,文献DOI怎么找? 1704723
邀请新用户注册赠送积分活动 820084
科研通“疑难数据库(出版商)”最低求助积分说明 771859