ML-LJP: Multi-Law Aware Legal Judgment Prediction

法学 计算机科学 期限(时间) 任务(项目管理) 代表(政治) 人工智能 政治学 工程类 物理 政治 量子力学 系统工程
作者
Yifei Liu,Yiquan Wu,Yating Zhang,Changlong Sun,Weiming Lü,Fei Wu,Kun Kuang
标识
DOI:10.1145/3539618.3591731
摘要

Legal judgment prediction (LJP) is a significant task in legal intelligence, which aims to assist the judges and determine the judgment result based on the case's fact description. The judgment result consists of law articles, charge, and prison term. The law articles serve as the basis for the charge and the prison term, which can be divided into two types, named as charge-related law article and term-related law article, respectively. Recently, many methods have been proposed and made tremendous progress in LJP. However, the existing methods only focus on the prediction of the charge-related law articles, ignoring the term-related law articles (e.g., laws about lenient treatment), which limits the performance in the prison term prediction. In this paper, following the actual legal process, we expand the law article prediction as a multi-label classification task that includes both the charge-related law articles and term-related law articles and propose a novel multi-law aware LJP (ML-LJP) method to improve the performance of LJP. Given the case's fact description, firstly, the label (e.g., law article and charge) definitions in the Code of Law are used to transform the representation of the fact into several label-specific representations and make the prediction of the law articles and the charge. To distinguish the similar content of different label definitions, contrastive learning is conducted in the training. Then, a graph attention network (GAT) is applied to learn the interactions among the multiple law articles for the prediction of the prison term. Since numbers (e.g., amount of theft and weight of drugs) are important for LJP but often ignored by conventional encoders, we design a corresponding number representation method to locate and better represent these effective numbers. Extensive experiments on real-world dataset show that our method achieves the best results compared to the state-of-the-art models, especially in the task of prison term prediction where ML-LJP achieves a 10.07% relative improvement over the best baseline.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
平平淡淡完成签到 ,获得积分10
1秒前
2秒前
取名叫做利完成签到,获得积分10
2秒前
Lonala发布了新的文献求助10
2秒前
FashionBoy应助小禾一定行采纳,获得10
3秒前
55555发布了新的文献求助10
3秒前
hwl26发布了新的文献求助10
3秒前
晴空万里完成签到,获得积分10
3秒前
结实的蘑菇完成签到 ,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
5秒前
6秒前
SYLH应助负蕲采纳,获得10
6秒前
斯文败类应助负蕲采纳,获得10
6秒前
壮观人达关注了科研通微信公众号
6秒前
7秒前
橙子发布了新的文献求助20
7秒前
SYLH应助独特的莫言采纳,获得10
8秒前
miao完成签到,获得积分10
11秒前
研友_8Raw2Z发布了新的文献求助10
11秒前
善学以致用应助刘刘刘采纳,获得10
12秒前
12秒前
14秒前
16秒前
壮观人达发布了新的文献求助10
19秒前
21秒前
树池发布了新的文献求助10
21秒前
马凯完成签到,获得积分10
22秒前
量子星尘发布了新的文献求助10
24秒前
26秒前
彳亍完成签到 ,获得积分10
27秒前
27秒前
我是老大应助文承龙采纳,获得10
29秒前
30秒前
31秒前
xmf发布了新的文献求助10
32秒前
11完成签到,获得积分10
34秒前
35秒前
36秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Parametric Random Vibration 800
Building Quantum Computers 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3864497
求助须知:如何正确求助?哪些是违规求助? 3406903
关于积分的说明 10651703
捐赠科研通 3130813
什么是DOI,文献DOI怎么找? 1726640
邀请新用户注册赠送积分活动 831917
科研通“疑难数据库(出版商)”最低求助积分说明 780051