已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Transformer Tracking via Frequency Fusion

计算机科学 变压器 融合 工程类 语言学 哲学 电压 电气工程
作者
Xiantao Hu,Bineng Zhong,Qihua Liang,Shengping Zhang,Ning Li,Xianxian Li,Rongrong Ji
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:34 (2): 1020-1031 被引量:18
标识
DOI:10.1109/tcsvt.2023.3289624
摘要

Transformer has achieved impressive progress in visual tracking due to their capability of global modeling, which enables them to learn low-frequency features(i.e., high-level semantic information). However, it seems to overlook the high-frequency features(i.e., low-level texture and edge information) which are crucial to identify different intra-class object instances in the tracking task. To address this issue, we propose a transformer based tracker via frequency fusion perspective that investigated whether high-frequency and low-frequency features can be effectively combined to achieve robust tracking. Specifically, we design a simple yet effective two-stage fusion strategy and use an appropriate frequency fusion strategy in tracking process of each stage so as to make full use of frequency domain information. In the feature extraction stage, we use wavelet decomposition of high-frequency subbands to solve the performance loss caused by the transformer's catastrophic forgetting of high-frequency information. In the prediction head stage, we use a variety of wavelet decomposition subbands to model the multi-frequency information. The two-stage fusion strategy makes our model extract more balanced and beneficial multi-frequency information, enabling it to effectively capture target texture information and local edge information while also being sensitive to global information. Extensive experiments on six challenging benchmarks (i.e., LaSOT $_{ext}$ , UAV123, TNL2K, LaSOT, TrackingNet, and GOT-10k) demonstrates the superior performance of our tracker.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
wangtingyu完成签到,获得积分10
5秒前
7秒前
yy完成签到,获得积分20
9秒前
刘标发布了新的文献求助10
11秒前
快乐的寄容完成签到 ,获得积分10
13秒前
14秒前
bkagyin应助冷艳的幻丝采纳,获得10
15秒前
Ava应助小莹采纳,获得10
15秒前
葡月将军完成签到,获得积分20
20秒前
祖之微笑发布了新的文献求助10
21秒前
21秒前
Jgogo完成签到,获得积分10
21秒前
传奇3应助海洋采纳,获得10
23秒前
南吕十八发布了新的文献求助30
23秒前
科研通AI5应助yy采纳,获得10
24秒前
阿萨德完成签到,获得积分20
24秒前
26秒前
阿萨德发布了新的文献求助10
28秒前
Jasper应助绿洲采纳,获得10
29秒前
30秒前
sissiarno应助WendyWen采纳,获得200
34秒前
柏莉发布了新的文献求助10
35秒前
37秒前
慈祥的冰淇淋完成签到 ,获得积分10
37秒前
aaaaa完成签到,获得积分10
37秒前
39秒前
40秒前
40秒前
jingutaimi完成签到,获得积分10
44秒前
44秒前
LaTeXer应助昏睡的芒果采纳,获得200
46秒前
bioli发布了新的文献求助10
48秒前
50秒前
54秒前
kangkang发布了新的文献求助10
55秒前
liuzengzhang666完成签到,获得积分10
56秒前
yjx完成签到,获得积分10
56秒前
kxdr完成签到,获得积分10
1分钟前
Dream完成签到,获得积分0
1分钟前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Plutonium Handbook 4000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Building Quantum Computers 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 900
Principles of Plasma Discharges and Materials Processing,3rd Edition 500
Atlas of Quartz Sand Surface Textures 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4215630
求助须知:如何正确求助?哪些是违规求助? 3749978
关于积分的说明 11795233
捐赠科研通 3415861
什么是DOI,文献DOI怎么找? 1874554
邀请新用户注册赠送积分活动 928606
科研通“疑难数据库(出版商)”最低求助积分说明 837733