Cross-view enhancement network for underwater images

计算机科学 特征(语言学) 水下 块(置换群论) 图像(数学) 图像质量 人工智能 图像增强 计算机视觉 模式识别(心理学) 地质学 几何学 数学 语言学 海洋学 哲学
作者
Jingchun Zhou,Dehuan Zhang,Weishi Zhang
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:121: 105952-105952 被引量:88
标识
DOI:10.1016/j.engappai.2023.105952
摘要

Single underwater image enhancement remains a challenging ill-posed problem, even with advanced deep learning methods, due to the significant information degeneration and various irrelevant contents. Current deep learning-based underwater image enhancement methods only consider using a single clear image as a positive feature for guiding the training of the enhancement network. However, the limited amount of helpful information constrains the network performance, and irrelevant contents consume many bits. Therefore, it is crucial to efficiently utilize cross-view neighboring features and provide corresponding relevant information for underwater enhancement. To address the challenges of degraded underwater images, we propose a novel cross-domain enhancement network (CVE-Net) that uses high-efficiency feature alignment to utilize neighboring features better. We employ a self-built database to optimize the helpful information and develop a feature alignment module (FAM) to adapt the temporal features. The dual-branch attention block is designed to handle different types of information and give more weight to essential features. Experiments demonstrate that CVE-Net outperforms state-of-the-art (SOTA) underwater vision enhancement methods in terms of both qualitatively and quantitatively results, significantly boosts the performance on underwater image quality, achieving a PSNR of 28.28 dB, which is 25% higher than Ucolor on the multi-view dataset. CVE-Net improves image quality while maintaining a good complexity-performance trade-off.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
LIJIngcan发布了新的文献求助10
1秒前
1秒前
1秒前
科研通AI5应助呆萌的雁荷采纳,获得10
1秒前
大饼发布了新的文献求助10
2秒前
自由的水绿完成签到 ,获得积分10
2秒前
2秒前
2秒前
lemo发布了新的文献求助20
3秒前
明明完成签到,获得积分20
3秒前
珊珊完成签到,获得积分10
4秒前
Jasper应助ice采纳,获得10
4秒前
4秒前
bb发布了新的文献求助10
4秒前
十善完成签到,获得积分10
4秒前
大气问枫完成签到,获得积分10
5秒前
标致小天鹅完成签到,获得积分10
5秒前
再夕予完成签到,获得积分10
5秒前
6秒前
珊珊发布了新的文献求助10
6秒前
6秒前
情怀应助Li采纳,获得10
6秒前
7秒前
7秒前
鱼鱼完成签到,获得积分20
8秒前
zikncy完成签到,获得积分10
8秒前
xdd完成签到 ,获得积分10
9秒前
9秒前
10秒前
田様应助qq采纳,获得10
10秒前
爱游泳的咸鱼完成签到,获得积分10
10秒前
蝈蝈蝈完成签到 ,获得积分10
10秒前
瓜瓜完成签到,获得积分10
11秒前
11秒前
12秒前
科目三应助科研通管家采纳,获得10
12秒前
ding应助科研通管家采纳,获得10
12秒前
隐形曼青应助科研通管家采纳,获得10
12秒前
不懈奋进应助科研通管家采纳,获得30
12秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3794025
求助须知:如何正确求助?哪些是违规求助? 3338915
关于积分的说明 10293004
捐赠科研通 3055424
什么是DOI,文献DOI怎么找? 1676641
邀请新用户注册赠送积分活动 804614
科研通“疑难数据库(出版商)”最低求助积分说明 762015