Predicting Rheological Properties of Wheat Dough from Flour Properties Using NIR Coupled with Artificial Neural Network

流变学 人工神经网络 小麦面粉 材料科学 食品科学 生物系统 高分子科学 人工智能 计算机科学 复合材料 化学 生物
作者
Anu Suprabha Raj,Chetan Badgujar,Romulo P. Lollato,P. V. Vara Prasad,Kaliramesh Siliveru
出处
期刊:Journal of the ASABE [American Society of Agricultural and Biological Engineers]
卷期号:67 (4): 1023-1035 被引量:2
标识
DOI:10.13031/ja.15851
摘要

Highlights A multi-layered perceptron type artificial neural network (ANN) was developed to predict the farinograph properties of wheat dough. ANN models with two to four hidden layers were developed for each Farinograph response, i.e., water absorption, dough development time, and dough stability. Permutation importance and Shapley values analysis emphasized the significance of protein content in model prediction. The developed model would serve as a decision support tool for flour mill and bakery managers and would assist in adapting flour mill settings and modifying processing parameters in bakeries. Abstract. Farinograph analysis serves as the standard for determining the baking quality of wheat flour. It measures the water absorption (WA), dough development time (DDT), and stability (DS) of wheat dough. These characteristics depend on wheat flour properties such as protein content, moisture, ash, and falling number. Additionally, farinograph analysis is costly, time-consuming, and requires skilled personnel. Therefore, an artificial neural network (ANN) model was developed to predict the farinograph properties of wheat dough as a function of flour properties. The models were developed using data from 192 wheat samples. Multi-layer perceptron-type feed-forward ANN models with increasing complexity were developed for each response variable, i.e., ANN-WA, ANN-DDT, and ANN-DS, and model success was evaluated via mean squared error (MSE) and correlation coefficient (r). The optimal models had two to four hidden layers, each with five to sixty neurons, and exhibited the lowest MSE and highest r values. In terms of predictive performance, the models ANN-WA and ANN-DDT (r = 0.79) demonstrated superior performance when compared with ANN-DS (r = 0.63). A feature importance analysis was conducted to provide insight on variable contributions, underscoring the significance of flour protein content in the model’s prediction. The study explored the applicability of data-driven ANN models in predicting the rheological characteristics of dough. The developed models could serve as a decision support tool and aid millers in adjusting mill settings and bakers in modifying dough mixing based on dough rheology. Keywords: Artificial neural network, Dough rheology, Farinograph analysis, Milling, NIR.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
千千完成签到,获得积分20
1秒前
1秒前
研友_Zeg9BL发布了新的文献求助10
1秒前
L91完成签到,获得积分10
2秒前
3秒前
3秒前
3秒前
Orange应助嘻嘻采纳,获得10
5秒前
K2L完成签到,获得积分10
6秒前
坚强的翠霜完成签到 ,获得积分10
6秒前
请不要喊我回答问题完成签到 ,获得积分10
6秒前
fffff完成签到,获得积分10
6秒前
端庄千琴完成签到,获得积分10
7秒前
裴雅柔完成签到,获得积分10
8秒前
wangq发布了新的文献求助10
8秒前
美含完成签到,获得积分10
8秒前
汐鹿应助咎如天采纳,获得10
8秒前
忐忑的红牛完成签到,获得积分10
8秒前
8秒前
galioo3000完成签到,获得积分10
8秒前
蓝桉完成签到 ,获得积分10
9秒前
lxz3131发布了新的文献求助10
9秒前
儒雅的豁完成签到,获得积分10
9秒前
10秒前
10秒前
10秒前
Zn中毒完成签到,获得积分10
10秒前
搜集达人应助酷炫的从雪采纳,获得10
10秒前
云舒完成签到,获得积分10
11秒前
七七完成签到,获得积分10
11秒前
神勇幻枫完成签到,获得积分10
11秒前
瓦片制度完成签到,获得积分10
11秒前
11秒前
drbrianlau完成签到,获得积分10
12秒前
瓜小完成签到 ,获得积分20
12秒前
张张完成签到,获得积分10
12秒前
BioGO发布了新的文献求助10
12秒前
科研通AI6应助qiao采纳,获得10
12秒前
CoCo完成签到 ,获得积分10
12秒前
务实的绝悟完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
A Practical Introduction to Regression Discontinuity Designs 2000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5658690
求助须知:如何正确求助?哪些是违规求助? 4823706
关于积分的说明 15082374
捐赠科研通 4817237
什么是DOI,文献DOI怎么找? 2578048
邀请新用户注册赠送积分活动 1532799
关于科研通互助平台的介绍 1491532