Recent progress in artificial intelligence and machine learning for novel diabetes mellitus medications development

医学 糖尿病 临床试验 人工智能 疾病 药物开发 不利影响 药品 风险分析(工程) 重症监护医学 药理学 内分泌学 内科学 计算机科学
作者
Qi Guo,Bo Fu,Yuan Tian,Shujun Xu,Xin Meng
出处
期刊:Current Medical Research and Opinion [Taylor & Francis]
卷期号:40 (9): 1483-1493 被引量:2
标识
DOI:10.1080/03007995.2024.2387187
摘要

Diabetes mellitus, stemming from either insulin resistance or inadequate insulin secretion, represents a complex ailment that results in prolonged hyperglycemia and severe complications. Patients endure severe ramifications such as kidney disease, vision impairment, cardiovascular disorders, and susceptibility to infections, leading to significant physical suffering and imposing substantial socio-economic burdens. This condition has evolved into an increasingly severe health crisis. There is an urgent need to develop new treatments with improved efficacy and fewer adverse effects to meet clinical demands. However, novel drug development is costly, time-consuming, and often associated with side effects and suboptimal efficacy, making it a major challenge. Artificial Intelligence (AI) and Machine Learning (ML) have revolutionized drug development across its comprehensive lifecycle, spanning drug discovery, preclinical studies, clinical trials, and post-market surveillance. These technologies have significantly accelerated the identification of promising therapeutic candidates, optimized trial designs, and enhanced post-approval safety monitoring. Recent advances in AI, including data augmentation, interpretable AI, and integration of AI with traditional experimental methods, offer promising strategies for overcoming the challenges inherent in AI-based drug discovery. Despite these advancements, there exists a notable gap in comprehensive reviews detailing AI and ML applications throughout the entirety of developing medications for diabetes mellitus. This review aims to fill this gap by evaluating the impact and potential of AI and ML technologies at various stages of diabetes mellitus drug development. It does that by synthesizing current research findings and technological advances so as to effectively control diabetes mellitus and mitigate its far-reaching social and economic impacts. The integration of AI and ML promises to revolutionize diabetes mellitus treatment strategies, offering hope for improved patient outcomes and reduced healthcare burdens worldwide.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
美好寒梦完成签到,获得积分10
1秒前
研友_QQC完成签到,获得积分10
1秒前
pigzhu完成签到,获得积分10
2秒前
gsji完成签到,获得积分10
2秒前
Dearjw1655完成签到,获得积分10
2秒前
lailai完成签到 ,获得积分10
2秒前
天天完成签到 ,获得积分10
3秒前
4秒前
Xin完成签到,获得积分10
4秒前
4秒前
yydssss完成签到,获得积分10
4秒前
超帅鸣凤完成签到,获得积分10
5秒前
5秒前
柳叶刀的终极传人完成签到,获得积分10
5秒前
5秒前
5秒前
浅陌初心完成签到 ,获得积分10
5秒前
酷酷云朵完成签到 ,获得积分10
6秒前
7秒前
7秒前
Leeu完成签到,获得积分10
7秒前
yml完成签到 ,获得积分10
7秒前
菜菜狙完成签到,获得积分10
7秒前
鲸鱼完成签到,获得积分10
8秒前
大狒狒发布了新的文献求助10
9秒前
常温发布了新的文献求助10
9秒前
从容芮应助非浅采纳,获得30
10秒前
冷傲迎梦发布了新的文献求助10
11秒前
xu完成签到 ,获得积分10
11秒前
悠夏sunny完成签到,获得积分10
11秒前
11秒前
柠檬01210发布了新的文献求助10
11秒前
ysy完成签到,获得积分10
12秒前
iuhgnor发布了新的文献求助10
12秒前
13秒前
中科院饲养员完成签到,获得积分10
13秒前
HuFan1201完成签到 ,获得积分10
13秒前
Akim应助Gracious采纳,获得10
13秒前
李文慧完成签到,获得积分10
14秒前
Murphy完成签到 ,获得积分10
14秒前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
A Student's Guide to Maxwell's Equations 200
The Power of High-Throughput Experimentation: General Topics and Enabling Technologies for Synthesis and Catalysis (Volume 1) 200
NK Cell Receptors: Advances in Cell Biology and Immunology by Colton Williams (Editor) 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3827474
求助须知:如何正确求助?哪些是违规求助? 3369741
关于积分的说明 10457440
捐赠科研通 3089439
什么是DOI,文献DOI怎么找? 1699861
邀请新用户注册赠送积分活动 817560
科研通“疑难数据库(出版商)”最低求助积分说明 770263