Spatial prediction of soil organic carbon: Combining machine learning with residual kriging in an agricultural lowland area (Lombardy region, Italy)

克里金 土壤碳 环境科学 背景(考古学) 随机森林 均方误差 变异函数 残余物 空间分析 极限学习机 人工神经网络 土壤科学 统计 计算机科学 数学 机器学习 算法 地理 土壤水分 考古
作者
Odunayo David Adeniyi,Alexander Brenning,Michael Maerker
出处
期刊:Geoderma [Elsevier BV]
卷期号:448: 116953-116953 被引量:1
标识
DOI:10.1016/j.geoderma.2024.116953
摘要

Soil organic carbon (SOC) plays a crucial role in the global carbon cycle and in maintaining soil functions in the context of land use and climate change. Understanding the spatial distribution of SOC is essential for the management of agricultural land to optimize soil health and carbon storage. In this study, we investigated the spatial distribution of SOC in an agricultural lowland area of the Lombardy region, Italy, using machine learning (ML) techniques combined with residual kriging. ML models, including the artificial neural network (ANN), extreme learning machine (ELM), and random forest (RF), were trained on 120 SOC observations and eight environmental variables to predict SOC values across the study area. The performance of this ML approach was assessed using a ten-fold nested cross-validation process. The ELM and RF models showed better predictive performances based on the concordance correlation coefficient and root mean square error (RMSE), with RF slightly outperforming ELM based on the RMSE. The residuals of each iteration from the ML models were interpolated by ordinary kriging (OK) and added to the ML-based trend model in a hybrid regression-kriging approach. This approach which accounted for the spatial autocorrelation of the prediction residuals, resulting in a marginally improved prediction accuracy in the ML models. In addition, we found that vertical distance to the channel network and channel network base level are important predictor variables that should be considered in future digital soil models for SOC in lowland areas, given their importance in this study. Furthermore, this study highlights that predicted SOC values were low, particularly in Luvisols, which can be explained by the long history of agricultural land use depleting SOC due to agricultural management and loss of organic plant residues. The prediction maps depicted spatial variation and patterns of SOC in the study area. Our findings may help to refine soil management practices and contribute to improving soil health and carbon sequestration in agricultural lowland areas.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
surong发布了新的文献求助10
刚刚
李健的小迷弟应助黎兆枫采纳,获得10
1秒前
dara997完成签到,获得积分10
3秒前
3秒前
3秒前
4秒前
4秒前
南冥完成签到 ,获得积分10
4秒前
hong完成签到,获得积分10
5秒前
谦让的牛排完成签到 ,获得积分10
6秒前
blue应助WW采纳,获得20
6秒前
7秒前
上官若男应助平淡路人采纳,获得10
8秒前
8秒前
8秒前
9秒前
共享精神应助liugm采纳,获得10
10秒前
woxiangbiye发布了新的文献求助10
10秒前
Jeannie发布了新的文献求助10
10秒前
Blake完成签到 ,获得积分10
11秒前
科研通AI5应助沉默的芒果采纳,获得10
14秒前
我cr发布了新的文献求助10
14秒前
黎兆枫发布了新的文献求助10
14秒前
16秒前
17完成签到,获得积分10
17秒前
18秒前
科研通AI5应助woxiangbiye采纳,获得10
18秒前
19秒前
Chaga发布了新的文献求助10
20秒前
要减肥的夜天完成签到,获得积分10
20秒前
21秒前
默默的皮牙子举报亚尔求助涉嫌违规
21秒前
风中扬完成签到,获得积分10
21秒前
平淡路人发布了新的文献求助10
23秒前
Jeannie完成签到,获得积分10
23秒前
24秒前
了该发布了新的文献求助10
25秒前
26秒前
27秒前
高分求助中
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
The Martian climate revisited: atmosphere and environment of a desert planet 500
Images that translate 500
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3844596
求助须知:如何正确求助?哪些是违规求助? 3386985
关于积分的说明 10547099
捐赠科研通 3107526
什么是DOI,文献DOI怎么找? 1711853
邀请新用户注册赠送积分活动 824208
科研通“疑难数据库(出版商)”最低求助积分说明 774638