Consistent, Balanced, and Overlapping Label Trees for Extreme Multi-label Learning

计算机科学 人工智能
作者
Zhiqi Ge,Yuanyuan Guan,Ximing Li,Bo Fu
标识
DOI:10.1145/3511808.3557261
摘要

The emerging eXtreme Multi-label Learning (XML) aims to induce multi-label predictive models from big datasets with extremely large numbers of instances, features, and especially labels. To meet the great efficiency challenge of XML, one flexible solution is the methodology of label tree, which, as its name suggests, is technically defined as a tree hierarchy of label subsets, partitioning the original large-scale XML problem into a number of small-scale sub-problems (i.e., denoted by leaf nodes) and then reducing the complexity to logarithmic time. Notably, the expected label trees should accurately find the right leaf nodes for future instances (i.e., effectiveness) and generate balanced leaf nodes (i.e., efficiency). To achieve this, we propose a novel generic method of label tree, namely Consistent, Balanced, and Overlapping Label Tree (CBOLT). To enhance the precision, we employ the weighted clustering to partition non-leaf nodes and allow overlapping label subsets, enabling to alleviate the inconsistent path and disjoint label subset issues. To improve the efficiency, we propose a new concept of a balanced problem scale and implement it with a balanced regularization for non-leaf nodes partition. We conduct extensive experiments on several benchmark XML datasets. Empirical results demonstrate that CBOLT is superior to the existing methods of label trees, and it can be applied to existing XML methods and achieve competitive performance with strong baselines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
夏侯绮山发布了新的文献求助10
刚刚
刚刚
机灵柚子应助lilililininini采纳,获得20
1秒前
2秒前
成就的迎夏完成签到,获得积分10
2秒前
悟川发布了新的文献求助50
2秒前
顾亚伟发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
3秒前
超级驳完成签到,获得积分20
5秒前
zero完成签到,获得积分10
5秒前
6秒前
yangyi关注了科研通微信公众号
6秒前
dadawang发布了新的文献求助10
7秒前
7秒前
量子星尘发布了新的文献求助10
8秒前
wangxiaoyanger完成签到,获得积分10
8秒前
8秒前
Criminology34应助可可采纳,获得10
8秒前
null应助可可采纳,获得10
8秒前
9秒前
小伊001完成签到,获得积分10
9秒前
10秒前
10秒前
科研通AI6.1应助dadawang采纳,获得10
11秒前
CodeCraft应助顾亚伟采纳,获得10
11秒前
11秒前
小二发布了新的文献求助10
12秒前
杨琪发布了新的文献求助10
13秒前
JamesPei应助Elaine采纳,获得20
14秒前
elous发布了新的文献求助10
14秒前
黄芳发布了新的文献求助10
14秒前
15秒前
XM发布了新的文献求助10
16秒前
kiki完成签到,获得积分10
16秒前
Fox完成签到,获得积分20
16秒前
17秒前
坚定的安珊完成签到 ,获得积分10
19秒前
20秒前
量子星尘发布了新的文献求助10
20秒前
Hello应助安详苠采纳,获得20
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5785906
求助须知:如何正确求助?哪些是违规求助? 5691004
关于积分的说明 15468779
捐赠科研通 4914961
什么是DOI,文献DOI怎么找? 2645485
邀请新用户注册赠送积分活动 1593228
关于科研通互助平台的介绍 1547539