De novo structure prediction of meteorin and meteorin-like protein for identification of domains, functional receptor binding regions, and their high-risk missense variants

生物 计算生物学 遗传学 错义突变 同源建模 蛋白质结构域 同源(生物学) 受体 单核苷酸多态性 蛋白质超家族 蛋白质结构 生物信息学 表型 基因 生物化学 基因型
作者
S. Shiva Shankar,Reema Banarjee,Swaraj M. Jathar,Sasidharan Rajesh,Sureshkumar Ramasamy,Mahesh J. Kulkarni
出处
期刊:Journal of Biomolecular Structure & Dynamics [Informa]
卷期号:42 (9): 4522-4536 被引量:5
标识
DOI:10.1080/07391102.2023.2220804
摘要

Meteorin (Metrn) and Meteorin-like (Metrnl) are homologous secreted proteins involved in neural development and metabolic regulation. In this study, we have performed de novo structure prediction and analysis of both Metrn and Metrnl using Alphafold2 (AF2) and RoseTTAfold (RF). Based on the domain and structural homology analysis of the predicted structures, we have identified that these proteins are composed of two functional domains, a CUB domain and an NTR domain, connected by a hinge/loop region. We have identified the receptor binding regions of Metrn and Metrnl using the machine-learning tools ScanNet and Masif. These were further validated by docking Metrnl with its reported KIT receptor, thus establishing the role of each domain in the receptor interaction. Also, we have studied the effect of non-synonymous SNPs on the structure and function of these proteins using an array of bioinformatics tools and selected 16 missense variants in Metrn and 10 in Metrnl that can affect the protein stability. This is the first study to comprehensively characterize the functional domains of Metrn and Metrnl at their structural level and identify the functional domains, and protein binding regions. This study also highlights the interaction mechanism of the KIT receptor and Metrnl. The predicted deleterious SNPs will allow further understanding of the role of these variants in modulating the plasma levels of these proteins in disease conditions such as diabetes.Communicated by Ramaswamy H. Sarma.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鳗鱼野狼发布了新的文献求助10
刚刚
1秒前
HeAuBook应助睡睡采纳,获得20
1秒前
1秒前
缓慢夜阑发布了新的文献求助10
1秒前
wry完成签到,获得积分10
1秒前
英姑应助小菜狗采纳,获得10
1秒前
2秒前
TURBO完成签到,获得积分10
2秒前
2秒前
2秒前
3秒前
白一陈发布了新的文献求助10
3秒前
麦丰发布了新的文献求助10
4秒前
英俊的铭应助舒适采柳采纳,获得10
4秒前
谭柠倩完成签到,获得积分10
4秒前
上官若男应助qww采纳,获得40
4秒前
领导范儿应助qww采纳,获得40
5秒前
kano发布了新的文献求助10
5秒前
5秒前
追梦人完成签到,获得积分10
5秒前
孙晓芳关注了科研通微信公众号
5秒前
dragon完成签到,获得积分10
5秒前
5秒前
默默戎发布了新的文献求助10
5秒前
mobius发布了新的文献求助10
6秒前
小海完成签到 ,获得积分10
6秒前
6秒前
东郭水云发布了新的文献求助10
7秒前
7秒前
JamesPei应助鳗鱼野狼采纳,获得10
7秒前
8秒前
LoooOK关注了科研通微信公众号
8秒前
54lhx发布了新的文献求助10
8秒前
8秒前
缓慢夜阑完成签到,获得积分10
8秒前
Metrol_Wang发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
9秒前
李健的小迷弟应助谭柠倩采纳,获得10
9秒前
Zx_1993应助桃也雾漫漫采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5513104
求助须知:如何正确求助?哪些是违规求助? 4607490
关于积分的说明 14505275
捐赠科研通 4542963
什么是DOI,文献DOI怎么找? 2489319
邀请新用户注册赠送积分活动 1471334
关于科研通互助平台的介绍 1443309