Transfer learning enables predictions in network biology

计算机科学 背景(考古学) 深度学习 人工智能 学习迁移 任务(项目管理) 机器学习 下游(制造业) 生物 运营管理 古生物学 经济 管理
作者
Christina V. Theodoris,Ling Xiao,Anant Chopra,Mark Chaffin,Zeina R. Al Sayed,Matthew C. Hill,Helene Mantineo,Elizabeth M. Brydon,Zexian Zeng,X. Shirley Liu,Patrick T. Ellinor
出处
期刊:Nature [Nature Portfolio]
卷期号:618 (7965): 616-624 被引量:412
标识
DOI:10.1038/s41586-023-06139-9
摘要

Mapping gene networks requires large amounts of transcriptomic data to learn the connections between genes, which impedes discoveries in settings with limited data, including rare diseases and diseases affecting clinically inaccessible tissues. Recently, transfer learning has revolutionized fields such as natural language understanding1,2 and computer vision3 by leveraging deep learning models pretrained on large-scale general datasets that can then be fine-tuned towards a vast array of downstream tasks with limited task-specific data. Here, we developed a context-aware, attention-based deep learning model, Geneformer, pretrained on a large-scale corpus of about 30 million single-cell transcriptomes to enable context-specific predictions in settings with limited data in network biology. During pretraining, Geneformer gained a fundamental understanding of network dynamics, encoding network hierarchy in the attention weights of the model in a completely self-supervised manner. Fine-tuning towards a diverse panel of downstream tasks relevant to chromatin and network dynamics using limited task-specific data demonstrated that Geneformer consistently boosted predictive accuracy. Applied to disease modelling with limited patient data, Geneformer identified candidate therapeutic targets for cardiomyopathy. Overall, Geneformer represents a pretrained deep learning model from which fine-tuning towards a broad range of downstream applications can be pursued to accelerate discovery of key network regulators and candidate therapeutic targets. A context-aware, attention-based deep learning model pretrained on single-cell transcriptomes enables predictions in settings with limited data in network biology and could accelerate discovery of key network regulators and candidate therapeutic targets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
momo应助粗心的智慧采纳,获得10
1秒前
篮孩子发布了新的文献求助10
2秒前
每天帅成两米八完成签到,获得积分10
3秒前
沉默的婴完成签到 ,获得积分10
3秒前
学术蝗虫应助YEEze采纳,获得20
4秒前
耍酷寻双完成签到 ,获得积分10
5秒前
陌路完成签到,获得积分10
5秒前
zzh完成签到 ,获得积分10
6秒前
李文英完成签到,获得积分10
12秒前
smm完成签到 ,获得积分10
12秒前
13秒前
飘逸蘑菇完成签到 ,获得积分10
13秒前
直率无春完成签到,获得积分10
13秒前
14秒前
咸鱼好闲完成签到 ,获得积分10
16秒前
16秒前
老实寒云完成签到 ,获得积分10
17秒前
18秒前
大青山完成签到,获得积分10
19秒前
濮阳映萱发布了新的文献求助10
20秒前
20秒前
白菜完成签到 ,获得积分0
21秒前
21秒前
花海完成签到,获得积分10
22秒前
22秒前
景行行止完成签到,获得积分10
23秒前
mayxmzhang完成签到,获得积分10
23秒前
xiao完成签到 ,获得积分10
24秒前
鲤鱼水池发布了新的文献求助10
25秒前
欣慰薯片发布了新的文献求助10
27秒前
桐桐应助聪慧的微笑采纳,获得10
28秒前
传奇3应助红花铁牛采纳,获得20
28秒前
HQ完成签到,获得积分10
28秒前
www发布了新的文献求助10
29秒前
wakeeeeeee完成签到,获得积分10
29秒前
鲤鱼水池完成签到,获得积分10
30秒前
醉熏的冷风完成签到,获得积分10
30秒前
song完成签到 ,获得积分10
32秒前
爆米花应助DOCTORLI采纳,获得10
32秒前
34秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Diagnostic Imaging: Pediatric Neuroradiology 2000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 700
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4131641
求助须知:如何正确求助?哪些是违规求助? 3668383
关于积分的说明 11601548
捐赠科研通 3365792
什么是DOI,文献DOI怎么找? 1849213
邀请新用户注册赠送积分活动 912916
科研通“疑难数据库(出版商)”最低求助积分说明 828355