An Urban Trajectory Data-Driven Approach for COVID-19 Simulation

弹道 计算机科学 大流行 人口 心理干预 2019年冠状病毒病(COVID-19) 计算机安全 模拟 医学 疾病 传染病(医学专业) 物理 病理 天文 环境卫生 精神科
作者
Zhishuai Li,Gang Xiong,Yisheng Lv,Peijun Ye,Xiaoli Liu,Sasu Tarkoma,Fei‐Yue Wang
出处
期刊:IEEE Transactions on Computational Social Systems [Institute of Electrical and Electronics Engineers]
卷期号:11 (3): 4290-4299
标识
DOI:10.1109/tcss.2024.3351886
摘要

The coronavirus disease 2019 (COVID-19) pandemic has changed the world deeply. Urban trajectory big data collected by wireless sensing devices provide great assistance for COVID-19 prevention. However, except for contact tracing, trajectory data are rarely employed in other preventative scenarios against the pandemic. In this article, we try to extend the application of trajectories auto-collected by wireless sensing devices and simulate the epidemic spread in a trajectory data-driven manner. After that, the effects of three nonpharmacological measures are quantified. In contrast to existing studies, additional requirements such as the complex topological networks are needless in our simulation, where the interactions between agents are derived by the intersections of their trajectories. Concretely, the dynamic of virus propagation among individuals is first modeled, and then an agent-based microsimulation environment is built as an artificial system to conduct the epidemic spread simulation. Finally, the trajectories are loaded into the agents as the reliance for their interactions, and the macroscopic changes under different interventions are revealed in a bottom–up way. As a case study, we conduct the simulation based on the trajectories in a real region, in which we find the following. 1) Among the three examined nonpharmacological interventions, community containment is more effective than keeping social distance, which can lower the deaths to nearly 1/9 compared to no action, while travel restrictions play limited roles. 2) There is a strong positive correlation between population densities and mortality. 3) The timing of community containment triggered by confirmed diagnoses is proportional to the number of deaths, thus early containment will significantly decrease mortality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
从容傲柏完成签到,获得积分10
1秒前
Dong发布了新的文献求助10
1秒前
4秒前
小于完成签到,获得积分10
6秒前
7秒前
7秒前
LearnerForever完成签到,获得积分10
7秒前
lll完成签到,获得积分10
7秒前
7秒前
灰鸽舞完成签到 ,获得积分10
8秒前
8秒前
小马哥完成签到,获得积分10
8秒前
复杂的笑寒完成签到,获得积分20
8秒前
9秒前
Dormantparner发布了新的文献求助10
10秒前
书一卷完成签到,获得积分10
10秒前
可爱的香菇完成签到 ,获得积分10
11秒前
代正壮完成签到 ,获得积分10
11秒前
ZiyunWu发布了新的文献求助10
12秒前
舒服的井完成签到,获得积分10
13秒前
14秒前
可爱的函函应助xmhxpz采纳,获得10
14秒前
an发布了新的文献求助20
14秒前
CipherSage应助快乐小子采纳,获得10
14秒前
16秒前
16秒前
贤惠的又菡完成签到 ,获得积分10
16秒前
量子星尘发布了新的文献求助10
17秒前
上官若男应助愫问采纳,获得10
17秒前
18秒前
19秒前
gy发布了新的文献求助10
20秒前
20秒前
JamesPei应助vfi采纳,获得10
20秒前
zz发布了新的文献求助10
20秒前
Ann完成签到,获得积分20
21秒前
DJ发布了新的文献求助10
21秒前
22秒前
syy发布了新的文献求助10
22秒前
FashionBoy应助wwww采纳,获得10
22秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Plutonium Handbook 4000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Functional High Entropy Alloys and Compounds 1000
Building Quantum Computers 1000
Molecular Cloning: A Laboratory Manual (Fourth Edition) 500
Social Epistemology: The Niches for Knowledge and Ignorance 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4231674
求助须知:如何正确求助?哪些是违规求助? 3765006
关于积分的说明 11830482
捐赠科研通 3424011
什么是DOI,文献DOI怎么找? 1879016
邀请新用户注册赠送积分活动 931933
科研通“疑难数据库(出版商)”最低求助积分说明 839431