An Urban Trajectory Data-Driven Approach for COVID-19 Simulation

弹道 计算机科学 大流行 人口 心理干预 2019年冠状病毒病(COVID-19) 计算机安全 模拟 医学 疾病 传染病(医学专业) 物理 病理 天文 环境卫生 精神科
作者
Zhishuai Li,Gang Xiong,Yisheng Lv,Peijun Ye,Xiaoli Liu,Sasu Tarkoma,Fei‐Yue Wang
出处
期刊:IEEE Transactions on Computational Social Systems [Institute of Electrical and Electronics Engineers]
卷期号:11 (3): 4290-4299
标识
DOI:10.1109/tcss.2024.3351886
摘要

The coronavirus disease 2019 (COVID-19) pandemic has changed the world deeply. Urban trajectory big data collected by wireless sensing devices provide great assistance for COVID-19 prevention. However, except for contact tracing, trajectory data are rarely employed in other preventative scenarios against the pandemic. In this article, we try to extend the application of trajectories auto-collected by wireless sensing devices and simulate the epidemic spread in a trajectory data-driven manner. After that, the effects of three nonpharmacological measures are quantified. In contrast to existing studies, additional requirements such as the complex topological networks are needless in our simulation, where the interactions between agents are derived by the intersections of their trajectories. Concretely, the dynamic of virus propagation among individuals is first modeled, and then an agent-based microsimulation environment is built as an artificial system to conduct the epidemic spread simulation. Finally, the trajectories are loaded into the agents as the reliance for their interactions, and the macroscopic changes under different interventions are revealed in a bottom–up way. As a case study, we conduct the simulation based on the trajectories in a real region, in which we find the following. 1) Among the three examined nonpharmacological interventions, community containment is more effective than keeping social distance, which can lower the deaths to nearly 1/9 compared to no action, while travel restrictions play limited roles. 2) There is a strong positive correlation between population densities and mortality. 3) The timing of community containment triggered by confirmed diagnoses is proportional to the number of deaths, thus early containment will significantly decrease mortality.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
翼静发布了新的文献求助10
刚刚
刚刚
一粟的粉r完成签到 ,获得积分10
刚刚
摆烂的鲲完成签到,获得积分10
刚刚
001完成签到,获得积分10
1秒前
爱吃糖的虎纹猫咪完成签到,获得积分10
1秒前
逍遥猪皮完成签到,获得积分10
1秒前
羊踯躅完成签到,获得积分10
1秒前
不动的大电视机完成签到,获得积分10
1秒前
for_abSCI完成签到,获得积分10
2秒前
Albert完成签到,获得积分10
2秒前
淡然寒蕾完成签到,获得积分10
2秒前
难过的小甜瓜完成签到,获得积分10
2秒前
顾矜应助海阔天空采纳,获得10
3秒前
unfeeling8完成签到 ,获得积分10
3秒前
vv完成签到,获得积分10
3秒前
小杨爱吃羊完成签到 ,获得积分10
3秒前
wqq发布了新的文献求助10
3秒前
拾柒完成签到,获得积分10
3秒前
烟柳画桥完成签到,获得积分10
4秒前
jokerli完成签到,获得积分10
4秒前
glomming完成签到 ,获得积分10
5秒前
青栞完成签到,获得积分10
5秒前
远方的蓝风铃完成签到,获得积分10
5秒前
Oasis发布了新的文献求助10
6秒前
可爱的函函应助研友_8QxN1Z采纳,获得10
6秒前
dogsday完成签到,获得积分10
6秒前
xiuxiu_27发布了新的文献求助10
6秒前
复杂的保温杯完成签到 ,获得积分10
7秒前
呆萌从蓉完成签到 ,获得积分10
7秒前
杂货铺老板娘完成签到,获得积分10
7秒前
qing完成签到,获得积分10
7秒前
勤奋的擎完成签到 ,获得积分10
8秒前
月儿完成签到,获得积分10
8秒前
zwenng完成签到,获得积分10
9秒前
谷雨茶完成签到,获得积分10
9秒前
我是老大应助ZhijunXiang采纳,获得30
9秒前
RebeccaHe完成签到,获得积分10
9秒前
幽默沛山完成签到 ,获得积分10
9秒前
10秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784938
求助须知:如何正确求助?哪些是违规求助? 3330274
关于积分的说明 10245276
捐赠科研通 3045590
什么是DOI,文献DOI怎么找? 1671719
邀请新用户注册赠送积分活动 800686
科研通“疑难数据库(出版商)”最低求助积分说明 759609