ClusCSE: Clustering-Based Contrastive Learning of Sentence Embeddings

计算机科学 聚类分析 人工智能 自然语言处理 判决
作者
Kaihui Guo,Wenhua Xu,Tianyang Liu
标识
DOI:10.1109/itaic58329.2023.10409027
摘要

We propose ClusCSE, an unsupervised sentence embedding framework. Contrastive learning has been widely researched for learning universal sentence embeddings in natural language processing. Contrastive methods typically apply well-designed transformations to raw sentences to construct positive pairs and combine different raw sentences to construct negative pairs. Following the usual paradigm of contrastive learning, unsup-SimCSE advanced state-of-the-art unsupervised sentence embeddings by taking dropout as the minimal data augmentation strategy. Considering the training objective, unsup-SimCSE expects to maximize the similarity of positive pairwise instances while minimize the similarity of negative pairwise instances. Indeed, even different raw sentences could be highly semantically similar. Thus, simply reducing the similarity of negative pairwise embeddings is impractical. Sentence embeddings learned by unsup-SimCSE may contain false knowledge of relationships of different sentences. To alleviate it, we introduce online clustering to unsup-SimCSE and thus propose ClusCSE. Instead of just comparing sentences, ClusCSE also enforces consistency between cluster assignments, which makes the embeddings aware of similar sentence groups. Our evaluations on semantic textual similarity tasks demonstrate that our proposed ClusCSE achieves superior performance compared to unsup-SimCSE with higher average Spearman' s correlation of 1.19% on BERT-base.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小卡拉米完成签到,获得积分20
刚刚
自信鞯完成签到,获得积分10
1秒前
GingerF完成签到,获得积分0
1秒前
Lisiqi完成签到,获得积分10
1秒前
DoctorXu完成签到,获得积分10
2秒前
3秒前
刘菠萝完成签到 ,获得积分10
3秒前
科研通AI6应助Dora采纳,获得10
3秒前
4秒前
Winnie完成签到,获得积分10
4秒前
4秒前
5秒前
领导范儿应助危机的乐双采纳,获得10
5秒前
科视完成签到,获得积分10
5秒前
6秒前
6秒前
幸运鹅47完成签到,获得积分10
7秒前
7秒前
8秒前
8秒前
9秒前
Xbro完成签到,获得积分10
9秒前
10秒前
Ren发布了新的文献求助10
10秒前
柳觅夏发布了新的文献求助10
11秒前
11秒前
研友_VZG7GZ应助橘子采纳,获得10
11秒前
小蘑菇应助可爱的冷霜采纳,获得10
11秒前
Xbro发布了新的文献求助10
12秒前
求助求助关注了科研通微信公众号
13秒前
科研通AI6应助yplofp采纳,获得10
13秒前
13秒前
糕糕发布了新的文献求助10
14秒前
14秒前
朝闻道完成签到 ,获得积分10
15秒前
pihriyyy完成签到,获得积分10
16秒前
桶桶要好好学习完成签到,获得积分10
19秒前
今天没桃课完成签到,获得积分10
19秒前
20秒前
研友_Lpaepn发布了新的文献求助10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5641246
求助须知:如何正确求助?哪些是违规求助? 4756025
关于积分的说明 15012634
捐赠科研通 4799678
什么是DOI,文献DOI怎么找? 2565518
邀请新用户注册赠送积分活动 1523794
关于科研通互助平台的介绍 1483473