已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Development, validation, and transportability of several machine-learned, non-exercise-based VO2max prediction models for older adults

Lasso(编程语言) 四分位数 随机森林 最大VO2 支持向量机 机器学习 数学 统计 线性回归 医学 计算机科学 内科学 心率 置信区间 万维网 血压
作者
Benjamin T. Schumacher,Michael J. LaMonte,Andrea Z. LaCroix,Eleanor M. Simonsick,Steven P. Hooker,Humberto Parada,John Bellettiere,Arun Kumar
出处
期刊:Journal of Sport and Health Science [Elsevier BV]
标识
DOI:10.1016/j.jshs.2024.02.004
摘要

There exist few maximal oxygen uptake (VO2max) non-exercise-based prediction equations, fewer using machine-learning (ML), and none specifically for older adults. Since direct measurement of VO2max is infeasible in large epidemiologic cohort studies, we sought to develop, validate, compare, and assess the transportability of several ML VO2max prediction algorithms. Baltimore Longitudinal Study of Aging (BLSA) participants with valid VO2max tests were included (n = 1080). Least Absolute Shrinkage and Selection Operator (LASSO), linear- and tree-boosted xgboost, random forest, and Support Vector Machine (SVM) algorithms were trained to predict VO2max values. We developed these algorithms for: (a) the overall BLSA, (b) by sex, (c) using all BLSA variables, and (d) variables common in aging cohorts. Finally, we quantified the associations between measured and predicted VO2max and mortality. The age was 69.0 ± 10.4 years (mean ± SD) and the measured VO2max was 21.6 ± 5.9 mL/kg/min. LASSO, linear- and tree-boosted xgboost, random forest, and SVM yielded root mean squared errors (RMSEs) of 3.4 mL/kg/min, 3.6 mL/kg/min, 3.4 mL/kg/min, 3.6 mL/kg/min, and 3.5 mL/kg/min, respectively. Incremental quartiles of measured VO2max showed an inverse gradient in mortality risk. Predicted VO2max variables yielded similar effect estimates but were not robust to adjustment. Measured VO2max is a strong predictor of mortality. Using ML can improve the accuracy of prediction as compared to simpler approaches but estimates of association with mortality remain sensitive to adjustment. Future studies should seek to reproduce these results so that VO2max, an important vital sign, can be more broadly studied as a modifiable target for promoting functional resiliency and healthy aging.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顺利的耶发布了新的文献求助10
刚刚
慕青应助李春霞采纳,获得10
2秒前
迷人的灵萱完成签到 ,获得积分10
4秒前
Jasper应助江峰采纳,获得10
5秒前
5秒前
小二郎应助loski采纳,获得10
6秒前
彭于晏应助科研通管家采纳,获得10
7秒前
打打应助科研通管家采纳,获得10
7秒前
7秒前
wanci应助科研通管家采纳,获得30
7秒前
小马甲应助科研通管家采纳,获得10
7秒前
林小昀完成签到 ,获得积分10
7秒前
DARKNESS完成签到,获得积分10
8秒前
书信发布了新的文献求助10
13秒前
John完成签到,获得积分10
17秒前
酷波er应助枯藤老柳树采纳,获得10
18秒前
小马甲应助轻松的贞采纳,获得10
20秒前
小鲤鱼完成签到 ,获得积分10
20秒前
十三完成签到 ,获得积分10
29秒前
22222发布了新的文献求助30
32秒前
eui完成签到,获得积分10
32秒前
35秒前
36秒前
mufulee完成签到,获得积分10
38秒前
40秒前
轻松的贞发布了新的文献求助10
41秒前
42秒前
45秒前
Candy2024完成签到 ,获得积分10
46秒前
46秒前
46秒前
48秒前
轻松的贞完成签到,获得积分10
55秒前
无聊又夏完成签到,获得积分10
57秒前
清晨牛发布了新的文献求助10
58秒前
58秒前
1分钟前
机智迎天发布了新的文献求助10
1分钟前
1分钟前
领导范儿应助不安的采白采纳,获得10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3782466
求助须知:如何正确求助?哪些是违规求助? 3327919
关于积分的说明 10233716
捐赠科研通 3042869
什么是DOI,文献DOI怎么找? 1670261
邀请新用户注册赠送积分活动 799662
科研通“疑难数据库(出版商)”最低求助积分说明 758904