Machine Learnig Approach for Prediction of Employee Salary using Demographic Information with Experience

工资 计算机科学 人工智能 经济 市场经济
作者
Babasaheb S. Satpute,Raghav Yadav,Pramod Kumar Yadav
标识
DOI:10.1109/gcat59970.2023.10353537
摘要

In the realm of workforce dynamics and income inequality, the accurate prediction of employee salaries serves as a vital endeavor to foster understanding and address disparities. This research paper delves into the development and implementation of a machine learning system aimed at predicting employee salaries. The dataset employed in this study encompasses a comprehensive collection of salary and demographic information, intricately intertwined with years of experience.The dataset's heterogeneous attributes encompass a spectrum of socio-demographic factors, including age, gender, education, country, and race. This confluence of variables provides an expansive landscape for analysis, enabling researchers to unearth intricate patterns and trends in income distribution across diverse demographic categories. Such exploration facilitates the identification of potential inequalities or variations in earning potential, fostering insights into the interplay between socio-demographic factors and remuneration.The distinct feature of incorporating years of experience within the dataset introduces an additional dimension to the analysis. This dynamic facet empowers researchers to investigate the interrelation between professional tenure and salary levels. By evaluating how income evolves with both demographic characteristics and accumulated work experience, the study offers a holistic perspective on income diversity within today's workforce.The core objective of this research paper is to devise and implement machine learning algorithms capable of accurately predicting employee salaries based on the amalgamation of socio-demographic attributes and professional experience. Through rigorous analysis and model development, the paper endeavors to unveil the intricate web of factors influencing earning potential. The outcomes of this study hold significant implications for policy makers, businesses, and stakeholders by shedding light on the multifaceted determinants of income disparities and facilitating evidence-based decision-making to mitigate inequalities in the modern workplace.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
nameinastar发布了新的文献求助10
刚刚
聆(*^_^*)完成签到,获得积分10
1秒前
FR完成签到,获得积分10
1秒前
roclie完成签到,获得积分10
1秒前
1秒前
1秒前
MUFCcyf完成签到,获得积分20
1秒前
三三完成签到,获得积分10
2秒前
云湮发布了新的文献求助10
2秒前
科目三应助小夫同学采纳,获得10
2秒前
樱悼柳雪完成签到,获得积分10
2秒前
2秒前
2秒前
2秒前
2秒前
zoe完成签到,获得积分10
2秒前
动听衬衫发布了新的文献求助10
3秒前
努力勤奋完成签到,获得积分10
3秒前
斯文败类应助yanyan采纳,获得30
3秒前
渡月桥发布了新的文献求助10
3秒前
东邪西毒加任我行完成签到,获得积分10
4秒前
andy发布了新的文献求助10
5秒前
专一的善愁完成签到 ,获得积分10
5秒前
Yeong完成签到,获得积分10
5秒前
李祺明完成签到 ,获得积分10
5秒前
5秒前
GangWu完成签到,获得积分10
5秒前
xiaohan,JIA完成签到,获得积分10
5秒前
5秒前
5秒前
田様应助gao采纳,获得10
6秒前
猪猪hero发布了新的文献求助10
6秒前
6秒前
lala完成签到,获得积分10
7秒前
wsd发布了新的文献求助10
7秒前
8秒前
小马驹发布了新的文献求助10
8秒前
8秒前
彭于彦祖应助鲁滨逊采纳,获得30
9秒前
mumu发布了新的文献求助50
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5427385
求助须知:如何正确求助?哪些是违规求助? 4540851
关于积分的说明 14174756
捐赠科研通 4458886
什么是DOI,文献DOI怎么找? 2445123
邀请新用户注册赠送积分活动 1436251
关于科研通互助平台的介绍 1413758