相图
统计物理学
星团(航天器)
集群扩展
声子
振动能量弛豫
材料科学
相(物质)
计算机科学
热力学
物理
凝聚态物理
分子
量子力学
程序设计语言
作者
Kasper Tolborg,Aron Walsh
标识
DOI:10.1021/acs.jpclett.3c03083
摘要
The rational design of alloys and solid solutions relies on accurate computational predictions of phase diagrams. The cluster expansion method has proven to be a valuable tool for studying disordered crystals. However, the effects of vibrational entropy are commonly neglected due to the computational cost. Here, we devise a method for including the vibrational free energy in cluster expansions with a low computational cost by fitting a machine learning force field (MLFF) to the relaxation trajectories available from cluster expansion construction. We demonstrate our method for two (pseudo)binary systems, Na1-xKxCl and Ag1-xPdx, for which accurate phonon dispersions and vibrational free energies are derived from the MLFF. For both systems, the inclusion of vibrational effects results in significantly better agreement with miscibility gaps in experimental phase diagrams. This methodology can allow routine inclusion of vibrational effects in calculated phase diagrams and thus more accurate predictions of properties and stability for mixtures of materials.
科研通智能强力驱动
Strongly Powered by AbleSci AI