亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multi-Instance Learning with One Side Label Noise

计算机科学 人工智能 机器学习 加权 分类器(UML) 多标签分类 钥匙(锁) 噪音(视频) 模式识别(心理学) 数据挖掘 图像(数学) 医学 计算机安全 放射科
作者
Tianxiang Luan,Shilin Gu,Xijia Tang,Wenzhang Zhuge,Chenping Hou
出处
期刊:ACM Transactions on Knowledge Discovery From Data [Association for Computing Machinery]
卷期号:18 (5): 1-24 被引量:1
标识
DOI:10.1145/3644076
摘要

Multi-instance Learning (MIL) is a popular learning paradigm arising from many real applications. It assigns a label to a set of instances, which is called a bag, and the bag’s label is determined by the instances within it. A bag is positive if and only if it has at least one positive instance. Since labeling bags is more complicated than labeling each instance, we will often face the mislabeling problem in MIL. Furthermore, it is more common that a negative bag has been mislabeled to a positive one, since one mislabeled instance will lead to the change of the whole bag label. This is an important problem that originated from real applications, e.g., web mining and image classification, but little research has concentrated on it as far as we know. In this article, we focus on this MIL problem with one side label noise that the negative bags are mislabeled as positive ones. To address this challenging problem, we propose, to the best our our knowledge, a novel multi-instance learning method with one side label noise. We design a new double weighting approach under traditional framework to characterize the “faithfulness” of each instance and each bag in learning the classifier. Briefly, on the instance level, we employ a sparse weighting method to select the key instances, and the MIL problem with one size label noise is converted to a mislabeled supervised learning scenario. On the bag level, the weights of bags, together with the selected key instances, will be utilized to identify the real positive bags. In addition, we have solved our proposed model by an alternative iteration method with proved convergence behavior. Empirical studies on various datasets have validated the effectiveness of our method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Zeeki完成签到 ,获得积分10
19秒前
47秒前
51秒前
1分钟前
1分钟前
Axel发布了新的文献求助10
1分钟前
Kevin完成签到,获得积分10
1分钟前
zz发布了新的文献求助10
1分钟前
1分钟前
1分钟前
烟花应助zz采纳,获得10
1分钟前
桥西小河完成签到 ,获得积分10
2分钟前
nojego完成签到,获得积分10
2分钟前
Galri完成签到 ,获得积分10
3分钟前
儒雅海秋完成签到,获得积分10
3分钟前
4分钟前
4分钟前
zz发布了新的文献求助10
4分钟前
小马甲应助zz采纳,获得10
4分钟前
高高的绮烟关注了科研通微信公众号
5分钟前
5分钟前
5分钟前
无情的友容完成签到 ,获得积分10
5分钟前
6分钟前
7分钟前
8分钟前
Axel完成签到,获得积分10
8分钟前
8分钟前
8分钟前
8分钟前
8分钟前
8分钟前
8分钟前
8分钟前
10分钟前
10分钟前
科研通AI5应助尼克狐尼克采纳,获得10
10分钟前
10分钟前
李健应助科研通管家采纳,获得10
10分钟前
英俊的铭应助科研通管家采纳,获得30
10分钟前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Pediatric Injectable Drugs 500
Instant Bonding Epoxy Technology 500
Methodology for the Human Sciences 500
ASHP Injectable Drug Information 2025 Edition 400
DEALKOXYLATION OF β-CYANOPROPIONALDEYHDE DIMETHYL ACETAL 400
March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4377390
求助须知:如何正确求助?哪些是违规求助? 3872966
关于积分的说明 12068263
捐赠科研通 3516067
什么是DOI,文献DOI怎么找? 1929471
邀请新用户注册赠送积分活动 971052
科研通“疑难数据库(出版商)”最低求助积分说明 869732