Attention-Based Interval Aided Networks for Data Modeling of Heterogeneous Sampling Sequences With Missing Values in Process Industry

缺少数据 插补(统计学) 计算机科学 数据挖掘 时间序列 数据建模 多元统计 采样(信号处理) 区间(图论) 过程(计算) 人工智能 机器学习 数学 滤波器(信号处理) 组合数学 计算机视觉 操作系统 数据库
作者
Xiaofeng Yuan,Nuo Xu,Lingjian Ye,Kai Wang,Feifan Shen,Yalin Wang,Chunhua Yang,Weihua Gui
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:20 (4): 5253-5262 被引量:34
标识
DOI:10.1109/tii.2023.3329684
摘要

In complex process industries, multivariate time sequences are omnipresent, whose nonlinearities and dynamics present two major challenges for soft sensing of important quality variables. Consequently, due to the potent representational capabilities, nonlinear dynamic models like gated recurrent unit (GRU) and long short-term memory (LSTM) networks have been used for data sequence modeling. Though it is a common occurrence in many industrial plants, data series with heterogeneous sample intervals and missing values cannot be directly handled by these dynamic algorithms. To this end, attention-based interval-aided networks (AIA-Net) are proposed in this article to adaptively model the temporal information for heterogeneous sampling sequences with missing values in the processes industry. It includes two main mechanisms, which are named attention-based time-aware dynamic imputation and interval-aided time-aware network, respectively. The reduction rate is introduced by the attention-based time-aware dynamic imputation to apply the effects of time intervals and is used in the imputation of missing data. The interval-aided time-aware network includes time intervals in the model structure and uses a sampling interval gate to correct the temporal correlations in time series. The proposed AIA-Net is successfully applied to a real hydrocracking process to predict the C5 and C6 content in the light naphtha.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
hongyintao发布了新的文献求助10
刚刚
WWW发布了新的文献求助10
刚刚
1秒前
xkkk完成签到,获得积分10
1秒前
南风发布了新的文献求助30
1秒前
1秒前
sky完成签到,获得积分10
2秒前
4秒前
4秒前
4秒前
不安毛豆发布了新的文献求助10
5秒前
6秒前
9秒前
9秒前
sober发布了新的文献求助10
10秒前
善学以致用应助不安毛豆采纳,获得10
10秒前
11秒前
13秒前
perfect发布了新的文献求助10
15秒前
松子完成签到,获得积分10
16秒前
16秒前
李悟尔发布了新的文献求助10
16秒前
瑾昭发布了新的文献求助20
17秒前
百浪多息完成签到,获得积分10
17秒前
科研通AI5应助乐观短靴采纳,获得10
18秒前
19秒前
三三发布了新的文献求助10
20秒前
21秒前
Yulei_Qian发布了新的文献求助10
21秒前
万能图书馆应助李悟尔采纳,获得10
21秒前
岁岁菌完成签到,获得积分10
23秒前
诺诺完成签到 ,获得积分10
24秒前
大面包发布了新的文献求助10
25秒前
25秒前
超级爆米花发布了新的文献求助100
26秒前
26秒前
闪闪如南发布了新的文献求助10
30秒前
Owen应助家伟采纳,获得10
32秒前
慕青应助张易达采纳,获得10
33秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
《続天台宗全書・史伝1 天台大師伝注釈類》 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842910
求助须知:如何正确求助?哪些是违规求助? 3384948
关于积分的说明 10538145
捐赠科研通 3105498
什么是DOI,文献DOI怎么找? 1710345
邀请新用户注册赠送积分活动 823598
科研通“疑难数据库(出版商)”最低求助积分说明 774157