Improved Background Subtraction Technique for Detecting Moving Objects

背景减法 计算机科学 人工智能 计算机视觉 水准点(测量) 目标检测 对象(语法) 噪音(视频) 滤波器(信号处理) 提取器 领域(数学) 中值滤波器 图像(数学) 模式识别(心理学) 图像处理 像素 数学 工程类 工艺工程 纯数学 地理 大地测量学
作者
Tannistha Pal
出处
期刊:Recent advances in computer science and communications [Bentham Science]
卷期号:14 (9): 2854-2862 被引量:2
标识
DOI:10.2174/2666255813999200817172733
摘要

Introduction: Moving object detection from videos is among the most difficult task in different areas of computer vision applications. Among the traditional object detection methods, researchers conclude that Background Subtraction method carried out better in aspects of execution time and output quality. Mehtod: Visual background extractor is a renowned algorithm in Background Subtraction method for detecting moving object in various applications. In the recent years, lots of work has been carried out to improve the existing Visual Background extractor algorithm. Result: After investigating many state of art techniques and finding out the research gaps, this paper presents an improved background subtraction technique based on morphological operation and 2D median filter for detecting moving object which reduces the noise in the output video and also enhances its accuracy at a very limited additional cost. Experimental results in several benchmark datasets confirmed the superiority of the proposed method over the state-of-the-art object detection methods. Conclusion: In this article, a method has been proposed for moving object detection where the quality of the output object is enhanced and good accuracy is achieved. This method provide with accurate experimental results, which helps in efficient object detection. The proposed technique also deals with Visual Background extractor Algorithm along with the Image Enhancement Procedure like Morphological and 2-D Filtering at a limited additional cost Discussion: This article worked on certain specific field, like noise reduction and image enhancement of output images of the existing ViBe Algorithm. The technique proposed in this article will be beneficial for various computer vision applications like video surveillance, road condition monitoring, airport safety, human activity analysis, monitoring marine border for security purpose etc.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
善学以致用应助guozizi采纳,获得10
1秒前
2秒前
小玉应助WUWEI采纳,获得20
2秒前
健康的雁凡完成签到,获得积分10
4秒前
lll完成签到,获得积分10
6秒前
乐乐应助科研通管家采纳,获得10
7秒前
大个应助科研通管家采纳,获得30
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
CodeCraft应助科研通管家采纳,获得10
7秒前
田様应助科研通管家采纳,获得10
7秒前
深情安青应助科研通管家采纳,获得10
7秒前
Jasper应助科研通管家采纳,获得30
7秒前
7秒前
小马甲应助科研通管家采纳,获得10
7秒前
大个应助科研通管家采纳,获得10
7秒前
顾矜应助科研通管家采纳,获得10
7秒前
李健应助科研通管家采纳,获得10
8秒前
天天快乐应助科研通管家采纳,获得10
8秒前
搜集达人应助科研通管家采纳,获得10
8秒前
8秒前
搜集达人应助科研通管家采纳,获得10
8秒前
田様应助科研通管家采纳,获得10
8秒前
尤水绿应助科研通管家采纳,获得20
8秒前
Owen应助科研通管家采纳,获得10
8秒前
烟花应助科研通管家采纳,获得10
8秒前
科研通AI2S应助Lyric采纳,获得10
8秒前
datang完成签到,获得积分10
10秒前
10秒前
11秒前
zgz发布了新的文献求助10
12秒前
芜湖发布了新的文献求助10
12秒前
13秒前
13秒前
14秒前
14秒前
hu完成签到 ,获得积分10
14秒前
guozizi发布了新的文献求助10
15秒前
16秒前
16秒前
高分求助中
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
The Martian climate revisited: atmosphere and environment of a desert planet 500
Images that translate 500
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3844493
求助须知:如何正确求助?哪些是违规求助? 3386880
关于积分的说明 10546518
捐赠科研通 3107344
什么是DOI,文献DOI怎么找? 1711747
邀请新用户注册赠送积分活动 824152
科研通“疑难数据库(出版商)”最低求助积分说明 774573