Implicit Functions in Feature Space for 3D Shape Reconstruction and Completion

计算机科学 空格(标点符号) 特征(语言学) 完井(油气井) 人工智能 计算机视觉 工程类 机械工程 语言学 操作系统 哲学
作者
Julian Chibane,Thiemo Alldieck,Gerard Pons-Moll
出处
期刊:Computer Vision and Pattern Recognition 被引量:229
标识
DOI:10.1109/cvpr42600.2020.00700
摘要

While many works focus on 3D reconstruction from images, in this paper, we focus on 3D shape reconstruction and completion from a variety of 3D inputs, which are deficient in some respect: low and high resolution voxels, sparse and dense point clouds, complete or incomplete. Processing of such 3D inputs is an increasingly important problem as they are the output of 3D scanners, which are becoming more accessible, and are the intermediate output of 3D computer vision algorithms. Recently, learned implicit functions have shown great promise as they produce continuous reconstructions. However, we identified two limitations in reconstruction from 3D inputs: 1) details present in the input data are not retained, and 2) poor reconstruction of articulated humans. To solve this, we propose Implicit Feature Networks (IF-Nets), which deliver continuous outputs, can handle multiple topologies, and complete shapes for missing or sparse input data retaining the nice properties of recent learned implicit functions, but critically they can also retain detail when it is present in the input data, and can reconstruct articulated humans. Our work differs from prior work in two crucial aspects. First, instead of using a single vector to encode a 3D shape, we extract a learnable 3-dimensional multi-scale tensor of deep features, which is aligned with the original Euclidean space embedding the shape. Second, instead of classifying x-y-z point coordinates directly, we classify deep features extracted from the tensor at a continuous query point. We show that this forces our model to make decisions based on global and local shape structure, as opposed to point coordinates, which are arbitrary under Euclidean transformations. Experiments demonstrate that IF-Nets outperform prior work in 3D object reconstruction in ShapeNet, and obtain significantly more accurate 3D human reconstructions. Code and project website is available at https://virtualhumans.mpi-inf.mpg.de/ifnets/.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
caolin驳回了华仔应助
刚刚
今后应助dingding采纳,获得30
刚刚
1秒前
万能图书馆应助moonlight采纳,获得30
1秒前
joe完成签到,获得积分10
1秒前
英俊的铭应助研友_xLOMQZ采纳,获得10
1秒前
ggcocoa发布了新的文献求助10
1秒前
猪猪hero发布了新的文献求助10
1秒前
2秒前
2秒前
2秒前
虾滑是科研小牛牛完成签到,获得积分20
4秒前
4秒前
乐乐完成签到,获得积分10
4秒前
科研通AI2S应助dtcao采纳,获得10
5秒前
明亮迎丝发布了新的文献求助10
5秒前
朴素代秋发布了新的文献求助10
5秒前
内向秀发发布了新的文献求助30
6秒前
6秒前
Lucky发布了新的文献求助10
7秒前
8秒前
8秒前
DDDiamond发布了新的文献求助10
9秒前
9秒前
9秒前
whiteandpink098完成签到,获得积分10
10秒前
跳跃的晓兰完成签到,获得积分20
11秒前
幽芊细雨发布了新的文献求助10
12秒前
123456完成签到,获得积分10
12秒前
小树叶发布了新的文献求助10
12秒前
13秒前
猪猪hero发布了新的文献求助10
13秒前
焱垚完成签到,获得积分10
14秒前
14秒前
ggcocoa完成签到,获得积分10
14秒前
NexusExplorer应助T拐拐采纳,获得10
14秒前
卡卡完成签到,获得积分10
15秒前
15秒前
sdl发布了新的文献求助10
15秒前
华仔应助英吉利25采纳,获得10
16秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
Ecological and Human Health Impacts of Contaminated Food and Environments 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
Lidocaine regional block in the treatment of acute gouty arthritis of the foot 350
International Relations at LSE: A History of 75 Years 308
Commercial production of mevalonolactone by fermentation and the application to skin cosmetics with anti-aging effect 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 计算机科学 内科学 纳米技术 复合材料 化学工程 遗传学 催化作用 物理化学 基因 冶金 量子力学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3929487
求助须知:如何正确求助?哪些是违规求助? 3474503
关于积分的说明 10982545
捐赠科研通 3204600
什么是DOI,文献DOI怎么找? 1770703
邀请新用户注册赠送积分活动 858755
科研通“疑难数据库(出版商)”最低求助积分说明 796738