Imaging diagnosis of hepatocellular carcinoma: LI-RADS

医学 肝细胞癌 双雷达 放射科 肿瘤科 内科学 癌症 乳腺摄影术 乳腺癌
作者
Guilherme Moura Cunha,Claude B. Sirlin,Kathryn J. Fowler
出处
期刊:Chinese clinical oncology [AME Publishing Company]
卷期号:10 (1): 3-3 被引量:26
标识
DOI:10.21037/cco-20-107
摘要

Liver cancer is the third most common cause of cancer related death worldwide, 90% being hepatocellular carcinoma (HCC) and about half of all HCCs estimated to occur in China. Imaging plays a pivotal role in the management of HCC. When stringent criteria are applied to at-risk populations, it enables HCCs to be diagnosed by imaging alone without further need of invasive histology confirmation. To optimize HCC imaging diagnosis and reporting, several systems have been proposed. The Liver Imaging Reporting and Data System (LI-RADS®) is currently the most comprehensive of these systems, providing guidance on all imaging-related aspects of HCC, from technique for acquisition, reporting, assessment of treatment response and management. For diagnosis, LI-RADS uses major and ancillary imaging features to assign hierarchical categories that communicate the relative probability of HCC to focal liver observations detected in patients at risk. Two LI-RADS algorithms yield high specificity and positive predictive value for HCC diagnosis on contrast enhanced ultrasound (CEUS), CT and MRI. The standardized lexicon and interpretation provided by LI-RADS also improve inter-reader agreement for imaging features and lesion categorization. Additionally, a LI-RADS treatment response algorithm (LR-TR) provide imaging criteria for assessment of response to locoregional therapy. LI-RADS is designed for universal adoption and in this review, we highlighted the most relevant aspects of LI-RADS for the diagnosis of HCC in clinical practice and discussed areas where LI-RADS and Asian guidelines are different.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
浮游应助青年才俊采纳,获得10
2秒前
orixero应助青年才俊采纳,获得10
2秒前
斯文败类应助青年才俊采纳,获得10
2秒前
SuyingGuo发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
3秒前
善学以致用应助YJT采纳,获得10
3秒前
藜誌完成签到,获得积分10
4秒前
fys2022完成签到 ,获得积分10
4秒前
4秒前
精明寻梅发布了新的文献求助30
5秒前
xxcc12356发布了新的文献求助10
6秒前
zhaoyi发布了新的文献求助10
6秒前
7秒前
8秒前
量子猫完成签到 ,获得积分10
9秒前
wanci应助SuyingGuo采纳,获得10
9秒前
魔幻的河流完成签到,获得积分10
10秒前
邹随阴发布了新的文献求助10
11秒前
瓶子君152完成签到,获得积分10
12秒前
田様应助甜雨雨雨呀采纳,获得10
13秒前
FashionBoy应助Sherry采纳,获得10
13秒前
chef发布了新的文献求助10
13秒前
lili发布了新的文献求助10
13秒前
jiunuan应助枫丶采纳,获得10
13秒前
14秒前
烂漫秀发发布了新的文献求助150
14秒前
隐形曼青应助米奇采纳,获得10
15秒前
15秒前
16秒前
17秒前
18秒前
满意芯发布了新的文献求助10
21秒前
www发布了新的文献求助10
21秒前
邹随阴完成签到,获得积分10
22秒前
22秒前
YY完成签到,获得积分10
23秒前
平淡南霜完成签到,获得积分10
23秒前
WissF-完成签到,获得积分10
23秒前
CipherSage应助YY采纳,获得10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1021
复杂系统建模与弹性模型研究 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5486607
求助须知:如何正确求助?哪些是违规求助? 4586106
关于积分的说明 14407835
捐赠科研通 4516543
什么是DOI,文献DOI怎么找? 2474876
邀请新用户注册赠送积分活动 1460776
关于科研通互助平台的介绍 1433865