Identification of Key Genes in Association with Progression and Prognosis in Cervical Squamous Cell Carcinoma

生物 小桶 基因 曲古抑菌素A 宫颈癌 计算生物学 生物信息学 癌症 遗传学 基因表达 转录组 组蛋白 组蛋白脱乙酰基酶
作者
Hua Meng,Jinhui Liu,Jiangnan Qiu,Song Nie,Yi Jiang,Yicong Wan,Wenjun Cheng
出处
期刊:DNA and Cell Biology [Mary Ann Liebert, Inc.]
卷期号:39 (5): 848-863 被引量:15
标识
DOI:10.1089/dna.2019.5202
摘要

Cervical cancer remains a primary cause of female death in developing countries, but its prognosis can be greatly improved if patients are diagnosed earlier. In the present study, we screened the common differentially expressed genes (DEGs) of cervical squamous cell carcinoma (CESC) from dataset GSE7803, Gene Expression Omnibus, and The Cancer Genome Atlas databases. An integrated bioinformatics analysis was performed based on these DEGs for their enrichment in functions and pathways, interaction network, prognostic signature, and candidate molecular drugs. As a result, 164 (114 upregulated and 47 downregulated) DEGs of CESC were identified for further investigation. We then conducted the gene ontology term enrichment and Kyoto Encyclopedia of Genes and Genomes Pathway analyses to reveal the underlying functions and pathways of these DEGs. In the protein-protein interaction network, hub module and hub genes were identified. Five genes of significant prognostic value-DSG2, ITM2A, CENPM, RIBC2, and MEIS2-were identified by prognostic signature analysis and used to construct a risk linear model. Further validation and investigation suggested DSG2 might be a key gene in CESC prognosis. We then identified two candidate small molecules (trichostatin A and tanespimycin) against CESC. Further validation and exploration of these hub genes are warranted for future prospect in clinical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱的函函应助江屿采纳,获得10
刚刚
xmh完成签到 ,获得积分10
2秒前
一一应助加油吧弟弟采纳,获得100
2秒前
图图发布了新的文献求助10
3秒前
娜行发布了新的文献求助10
4秒前
欣喜的问柳完成签到,获得积分20
5秒前
情怀应助taozi采纳,获得10
5秒前
5秒前
MX应助mujianhua采纳,获得30
6秒前
6秒前
6秒前
Zoe1112完成签到,获得积分10
6秒前
hkh发布了新的文献求助10
7秒前
无畏完成签到,获得积分10
7秒前
呃呃呃c应助马爱林采纳,获得10
7秒前
Jasper应助hhh1采纳,获得10
7秒前
完美世界应助风中的惊蛰采纳,获得10
8秒前
9秒前
万能图书馆应助hlb采纳,获得10
9秒前
123发布了新的文献求助20
10秒前
承序完成签到,获得积分10
10秒前
图图完成签到,获得积分10
10秒前
11秒前
nicky发布了新的文献求助10
12秒前
12秒前
meng发布了新的文献求助10
13秒前
安琦发布了新的文献求助10
14秒前
15秒前
wangyaqi完成签到,获得积分10
16秒前
oh发布了新的文献求助10
16秒前
17秒前
17秒前
18秒前
19秒前
22秒前
君无名完成签到 ,获得积分10
22秒前
22秒前
领导范儿应助CHEN采纳,获得10
22秒前
酱酱酿酿发布了新的文献求助10
23秒前
24秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The phrasal lexicon 200
Solving Nonlinear Equations with Newton's Method 200
Reference Guide for Dynamic Models of HVAC Equipment 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3836107
求助须知:如何正确求助?哪些是违规求助? 3378496
关于积分的说明 10504553
捐赠科研通 3098068
什么是DOI,文献DOI怎么找? 1706249
邀请新用户注册赠送积分活动 820923
科研通“疑难数据库(出版商)”最低求助积分说明 772312