A Data Mining Approach to Diagnose Cancer for Therapeutic Decision Making.

自组织映射 阶段(地层学) 支持向量机 癌症 医学诊断 集合(抽象数据类型) 数据集 计算机科学 人工智能 儿童癌症 人口 机器学习 医学 数据挖掘 病理 内科学 生物 人工神经网络 古生物学 环境卫生 程序设计语言
作者
Juliet Rani Rajan,A. Chilambuchelvan
出处
期刊:PubMed 卷期号:25 (S1): 2-7 被引量:3
链接
标识
摘要

With the increase in population, there is a rise in number of cancer cases starting from young children to old people. The uncommon cancers are generally sporadic and there are no pre-defined techniques/tools for the diagnosis. Identifying the diseases at an early stage can avoid the cancerous cells from metastasis to different body parts through tissue, lymph system and blood. It is very difficult for the parents to know that the child is suffering from cancer until the cancer has reached to Stage 4. The duration it takes the cancer to reach Stage 4 can depend on many factors but the fact about childhood cancer is that it is curable to some extent. Diagnoses of the cancer at an early stage, i.e. at Stage 1, from childhood to old age can increase the survival rate of the patients by 85% and also helps to come up with certain therapy.The Gene Expression data of Cancer is taken from the CGED. Two approached are being implemented in this paper: Modified version of the Support Vector Machine and Kohonen' s Self Organizing Map to identify the disease during its Stage 1. Annova method has been used to validate the data.Support Vector Machine has yielded a classification accuracy of 99.1% and the Kohonen's map has produced an accuracy of 89% with the same set of samples.Support Vector Machine has yielded a good accuracy result as opposed to Kohonen' s Self Organizing Map but SOM has the capability of adapting itself to learn new features based on experience unlike the SVM. A combination of both the tools can be used based on the type of patients visiting the practitioner. The approaches can assist the medical practitioners as pre-diagnoses tool for the early diagnoses of pediatric cancer.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Kayla完成签到 ,获得积分10
1秒前
等于几都行完成签到 ,获得积分10
1秒前
2秒前
秋枫忆完成签到,获得积分10
2秒前
Bella完成签到 ,获得积分10
2秒前
无花果应助可乐味橘子采纳,获得10
4秒前
林大侠完成签到,获得积分10
4秒前
顾矜应助神勇的砖头采纳,获得10
7秒前
A溶大美噶完成签到,获得积分10
8秒前
小茄子爷爷应助liu采纳,获得30
8秒前
10秒前
向雅完成签到,获得积分10
13秒前
Maglev发布了新的文献求助30
15秒前
16秒前
舒服的灵安完成签到 ,获得积分10
16秒前
月亮之下完成签到 ,获得积分10
18秒前
RRR发布了新的文献求助10
20秒前
20秒前
Wonder完成签到,获得积分10
20秒前
M_liya完成签到 ,获得积分10
20秒前
Hello应助可乐味橘子采纳,获得10
22秒前
solo4bird完成签到,获得积分10
23秒前
笨笨芯发布了新的文献求助50
23秒前
哈哈哈完成签到,获得积分10
23秒前
小梦完成签到,获得积分10
24秒前
keyan完成签到,获得积分10
25秒前
Xltox完成签到,获得积分10
26秒前
知行完成签到,获得积分10
27秒前
27秒前
火火火木完成签到 ,获得积分10
28秒前
所所应助笨笨芯采纳,获得10
30秒前
青菜完成签到,获得积分10
31秒前
秀丽的小懒虫完成签到,获得积分10
32秒前
33秒前
logan完成签到,获得积分10
33秒前
zss完成签到 ,获得积分10
35秒前
小橘子完成签到 ,获得积分10
36秒前
杨。。完成签到 ,获得积分10
36秒前
小张在进步完成签到,获得积分10
39秒前
39秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
The Martian climate revisited: atmosphere and environment of a desert planet 500
Images that translate 500
Transnational East Asian Studies 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3843340
求助须知:如何正确求助?哪些是违规求助? 3385634
关于积分的说明 10541427
捐赠科研通 3106276
什么是DOI,文献DOI怎么找? 1710911
邀请新用户注册赠送积分活动 823851
科研通“疑难数据库(出版商)”最低求助积分说明 774313