已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Tracking and Monitoring Mood Stability of Patients With Major Depressive Disorder by Machine Learning Models Using Passive Digital Data: Prospective Naturalistic Multicenter Study

心情 重性抑郁障碍 心理学 人工智能 机器学习 精神科 医学 计算机科学
作者
Ran Bai,Le Xiao,Yu Guo,Xuequan Zhu,Nanxi Li,Yashen Wang,Qinqin Chen,Lei Feng,Yinghua Wang,Xiangyi Yu,Chunxue Wang,Yongdong Hu,Zhandong Liu,Haiyong Xie,Gang Wang
出处
期刊:Jmir mhealth and uhealth [JMIR Publications]
卷期号:9 (3): e24365-e24365 被引量:61
标识
DOI:10.2196/24365
摘要

Background Major depressive disorder (MDD) is a common mental illness characterized by persistent sadness and a loss of interest in activities. Using smartphones and wearable devices to monitor the mental condition of patients with MDD has been examined in several studies. However, few studies have used passively collected data to monitor mood changes over time. Objective The aim of this study is to examine the feasibility of monitoring mood status and stability of patients with MDD using machine learning models trained by passively collected data, including phone use data, sleep data, and step count data. Methods We constructed 950 data samples representing time spans during three consecutive Patient Health Questionnaire-9 assessments. Each data sample was labeled as Steady or Mood Swing, with subgroups Steady-remission, Steady-depressed, Mood Swing-drastic, and Mood Swing-moderate based on patients’ Patient Health Questionnaire-9 scores from three visits. A total of 252 features were extracted, and 4 feature selection models were applied; 6 different combinations of types of data were experimented with using 6 different machine learning models. Results A total of 334 participants with MDD were enrolled in this study. The highest average accuracy of classification between Steady and Mood Swing was 76.67% (SD 8.47%) and that of recall was 90.44% (SD 6.93%), with features from all types of data being used. Among the 6 combinations of types of data we experimented with, the overall best combination was using call logs, sleep data, step count data, and heart rate data. The accuracies of predicting between Steady-remission and Mood Swing-drastic, Steady-remission and Mood Swing-moderate, and Steady-depressed and Mood Swing-drastic were over 80%, and the accuracy of predicting between Steady-depressed and Mood Swing-moderate and the overall Steady to Mood Swing classification accuracy were over 75%. Comparing all 6 aforementioned combinations, we found that the overall prediction accuracies between Steady-remission and Mood Swing (drastic and moderate) are better than those between Steady-depressed and Mood Swing (drastic and moderate). Conclusions Our proposed method could be used to monitor mood changes in patients with MDD with promising accuracy by using passively collected data, which can be used as a reference by doctors for adjusting treatment plans or for warning patients and their guardians of a relapse. Trial Registration Chinese Clinical Trial Registry ChiCTR1900021461; http://www.chictr.org.cn/showprojen.aspx?proj=36173

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张海洋应助搜文献的北北采纳,获得10
刚刚
1秒前
1秒前
dery发布了新的文献求助10
3秒前
3秒前
4秒前
iu发布了新的文献求助10
4秒前
奇趣糖发布了新的文献求助10
4秒前
4秒前
Ldq完成签到 ,获得积分10
5秒前
5秒前
徐小赞发布了新的文献求助10
5秒前
精明一寡发布了新的文献求助10
6秒前
Qiang发布了新的文献求助10
6秒前
7秒前
7秒前
8秒前
司空豁发布了新的文献求助10
9秒前
科研狗发布了新的文献求助10
9秒前
希望天下0贩的0应助iu采纳,获得10
9秒前
zzzzzzLARS发布了新的文献求助10
9秒前
研友_VZG7GZ应助小骆采纳,获得10
9秒前
yaoyao发布了新的文献求助10
10秒前
spy完成签到 ,获得积分10
10秒前
852应助dery采纳,获得10
10秒前
Doyle完成签到,获得积分10
11秒前
11秒前
wantingqq123发布了新的文献求助10
13秒前
13秒前
知了完成签到,获得积分10
14秒前
量子星尘发布了新的文献求助10
14秒前
psylin完成签到,获得积分20
15秒前
17秒前
万能图书馆应助阿司匹林采纳,获得10
17秒前
123完成签到,获得积分10
17秒前
22秒前
chen完成签到,获得积分10
23秒前
VV完成签到 ,获得积分10
23秒前
司空豁发布了新的文献求助10
23秒前
Lucas应助科研狗采纳,获得10
23秒前
高分求助中
The Oxford Encyclopedia of the History of Modern Psychology 2000
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
Applied Survey Data Analysis (第三版, 2025) 850
Mineral Deposits of Africa (1907-2023): Foundation for Future Exploration 800
 Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 590
Learning to Listen, Listening to Learn 570
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3881380
求助须知:如何正确求助?哪些是违规求助? 3423748
关于积分的说明 10735981
捐赠科研通 3148690
什么是DOI,文献DOI怎么找? 1737352
邀请新用户注册赠送积分活动 838802
科研通“疑难数据库(出版商)”最低求助积分说明 784087