Tracking and Monitoring Mood Stability of Patients With Major Depressive Disorder by Machine Learning Models Using Passive Digital Data: Prospective Naturalistic Multicenter Study

心情 重性抑郁障碍 心理学 人工智能 机器学习 精神科 医学 计算机科学
作者
Ran Bai,Le Xiao,Yu Guo,Xuequan Zhu,Nanxi Li,Yashen Wang,Qinqin Chen,Lei Feng,Yinghua Wang,Xiangyi Yu,Chunxue Wang,Yongdong Hu,Zhandong Liu,Haiyong Xie,Gang Wang
出处
期刊:Jmir mhealth and uhealth [JMIR Publications]
卷期号:9 (3): e24365-e24365 被引量:61
标识
DOI:10.2196/24365
摘要

Background Major depressive disorder (MDD) is a common mental illness characterized by persistent sadness and a loss of interest in activities. Using smartphones and wearable devices to monitor the mental condition of patients with MDD has been examined in several studies. However, few studies have used passively collected data to monitor mood changes over time. Objective The aim of this study is to examine the feasibility of monitoring mood status and stability of patients with MDD using machine learning models trained by passively collected data, including phone use data, sleep data, and step count data. Methods We constructed 950 data samples representing time spans during three consecutive Patient Health Questionnaire-9 assessments. Each data sample was labeled as Steady or Mood Swing, with subgroups Steady-remission, Steady-depressed, Mood Swing-drastic, and Mood Swing-moderate based on patients’ Patient Health Questionnaire-9 scores from three visits. A total of 252 features were extracted, and 4 feature selection models were applied; 6 different combinations of types of data were experimented with using 6 different machine learning models. Results A total of 334 participants with MDD were enrolled in this study. The highest average accuracy of classification between Steady and Mood Swing was 76.67% (SD 8.47%) and that of recall was 90.44% (SD 6.93%), with features from all types of data being used. Among the 6 combinations of types of data we experimented with, the overall best combination was using call logs, sleep data, step count data, and heart rate data. The accuracies of predicting between Steady-remission and Mood Swing-drastic, Steady-remission and Mood Swing-moderate, and Steady-depressed and Mood Swing-drastic were over 80%, and the accuracy of predicting between Steady-depressed and Mood Swing-moderate and the overall Steady to Mood Swing classification accuracy were over 75%. Comparing all 6 aforementioned combinations, we found that the overall prediction accuracies between Steady-remission and Mood Swing (drastic and moderate) are better than those between Steady-depressed and Mood Swing (drastic and moderate). Conclusions Our proposed method could be used to monitor mood changes in patients with MDD with promising accuracy by using passively collected data, which can be used as a reference by doctors for adjusting treatment plans or for warning patients and their guardians of a relapse. Trial Registration Chinese Clinical Trial Registry ChiCTR1900021461; http://www.chictr.org.cn/showprojen.aspx?proj=36173

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
苏世誉完成签到,获得积分10
刚刚
中西西完成签到 ,获得积分10
1秒前
1秒前
蒺藜发布了新的文献求助10
1秒前
小王同学发布了新的文献求助10
1秒前
NNUsusan发布了新的文献求助10
1秒前
科研通AI6应助刚国忠采纳,获得10
1秒前
2秒前
2秒前
中国大陆发布了新的文献求助10
2秒前
子言完成签到,获得积分10
3秒前
SL发布了新的文献求助10
3秒前
Rita发布了新的文献求助10
3秒前
六六发布了新的文献求助10
3秒前
诸葛朝雪发布了新的文献求助10
3秒前
SaqLa完成签到,获得积分20
3秒前
4秒前
奶糖爱果冻完成签到 ,获得积分10
4秒前
4秒前
ang完成签到,获得积分20
4秒前
me完成签到,获得积分10
4秒前
gexiaoyang完成签到,获得积分10
4秒前
科目三应助老鱼吹浪采纳,获得10
5秒前
许寻笙完成签到 ,获得积分10
5秒前
狂野傲珊完成签到 ,获得积分10
5秒前
念想发布了新的文献求助10
5秒前
wxz完成签到,获得积分10
5秒前
隐形曼青应助端庄白开水采纳,获得10
6秒前
Solarenergy完成签到,获得积分0
6秒前
6秒前
SaqLa发布了新的文献求助30
7秒前
无荒关注了科研通微信公众号
7秒前
一碟土豆丝完成签到,获得积分10
7秒前
阿洁发布了新的文献求助10
7秒前
深情安青应助凸迩丝儿采纳,获得10
7秒前
7秒前
FuZh发布了新的文献求助10
8秒前
吕景宽发布了新的文献求助10
8秒前
欢喜的非笑完成签到 ,获得积分10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5068161
求助须知:如何正确求助?哪些是违规求助? 4289857
关于积分的说明 13365461
捐赠科研通 4109571
什么是DOI,文献DOI怎么找? 2250420
邀请新用户注册赠送积分活动 1255787
关于科研通互助平台的介绍 1188288