Bayesian belief networks for system fault diagnostics

不可用 贝叶斯网络 断层(地质) 故障树分析 可靠性工程 概率逻辑 故障检测与隔离 计算机科学 过程(计算) 贝叶斯概率 数据挖掘 人工智能 工程类 实时计算 机器学习 执行机构 地震学 地质学 操作系统
作者
Michael Lampis,John Andrews
出处
期刊:Quality and Reliability Engineering International [Wiley]
卷期号:25 (4): 409-426 被引量:87
标识
DOI:10.1002/qre.978
摘要

Abstract Fault diagnostic methods aim to recognize when faults exist on a system and to identify the failures that have caused the fault. The symptoms of the fault are obtained from readings from sensors located on the system. When the observed readings do not match those expected then a fault can exist. Using the detailed information provided by the sensors, a list of the failures (singly or in combinations) that could cause the symptoms can be deduced. In the last two decades, fault diagnosis has received growing attention due to the complexity of modern systems and the consequent need for more sophisticated techniques to identify the failures when they occur. Detecting the causes of a fault quickly and efficiently means reducing the costs associated with the system unavailability and, in certain cases, avoiding the risks of unsafe operating conditions. Bayesian belief networks (BBNs) are probabilistic models that were developed in artificial intelligence applications but are now applied in many fields. They are ideal for modelling the causal relations between faults and symptoms used in the detection process. The probabilities of events within the BBN can be updated following observations (evidence) about the system state. In this paper we investigate how BBNs can be applied to diagnose faults on a system. Initially Fault trees (FTs) are constructed to indicate how the component failures can combine to cause unexpected deviations in the variables monitored by the sensors. Converting FTs into BNs enables the creation of a model that represents the system with a single network, which is constituted by sub‐networks. The posterior probabilities of the components' failures give a measure of those components that have caused the symptoms observed. The method gives a procedure that can be generalized for any system where the causality structure can be developed relating the system component states to the sensor readings. The technique is demonstrated with a simple example system. Copyright © 2008 John Wiley & Sons, Ltd.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爱笑的眼睛关注了科研通微信公众号
刚刚
科研通AI6应助YKX采纳,获得10
刚刚
zhogwe完成签到,获得积分10
1秒前
科研通AI5应助冷静的方盒采纳,获得10
1秒前
舒适大米发布了新的文献求助10
1秒前
不安青牛应助syxz0628采纳,获得20
2秒前
乐乐应助热情大树采纳,获得10
2秒前
高贵鬼神关注了科研通微信公众号
2秒前
隐形曼青应助111采纳,获得10
3秒前
3秒前
情怀应助陈莹采纳,获得10
3秒前
jenniferli完成签到,获得积分10
4秒前
linkman应助HXDong123采纳,获得100
4秒前
田田圈完成签到,获得积分10
4秒前
5秒前
雪妮儿完成签到,获得积分10
5秒前
5秒前
6秒前
7秒前
F1t272发布了新的文献求助10
7秒前
7秒前
科研通AI6应助枕风采纳,获得10
8秒前
8秒前
夏天吃葡萄完成签到 ,获得积分10
8秒前
8秒前
9秒前
科研通AI2S应助79采纳,获得10
9秒前
憂xqc发布了新的文献求助10
9秒前
10秒前
ccpumpkin完成签到,获得积分10
10秒前
笑点低霸完成签到 ,获得积分10
11秒前
fu发布了新的文献求助10
11秒前
小古发布了新的文献求助20
12秒前
12秒前
www发布了新的文献求助10
12秒前
Linden发布了新的文献求助10
12秒前
羊青丝发布了新的文献求助10
12秒前
小燕子发布了新的文献求助10
13秒前
Chillym完成签到 ,获得积分10
13秒前
NIU完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
줄기세포 생물학 800
Pediatric Injectable Drugs 500
Instant Bonding Epoxy Technology 500
ASHP Injectable Drug Information 2025 Edition 400
DEALKOXYLATION OF β-CYANOPROPIONALDEYHDE DIMETHYL ACETAL 400
Critique du De mundo de Thomas White 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4385981
求助须知:如何正确求助?哪些是违规求助? 3878559
关于积分的说明 12082135
捐赠科研通 3522209
什么是DOI,文献DOI怎么找? 1933005
邀请新用户注册赠送积分活动 973991
科研通“疑难数据库(出版商)”最低求助积分说明 872179