Breast tumor segmentation and shape classification in mammograms using generative adversarial and convolutional neural network

计算机科学 人工智能 基本事实 分割 卷积神经网络 Sørensen–骰子系数 模式识别(心理学) 交叉口(航空) 深度学习 人工神经网络 生成对抗网络 感兴趣区域 二元分类 计算机视觉 图像分割 支持向量机 工程类 航空航天工程
作者
Vivek Kumar Singh,Hatem A. Rashwan,Santiago Romaní,Farhan Akram,Nidhi Pandey,Md. Mostafa Kamal Sarker,Adel Saleh,Meritxell Arenas,M. Árquez,Domènec Puig,Jordina Torrents‐Barrena
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:139: 112855-112855 被引量:198
标识
DOI:10.1016/j.eswa.2019.112855
摘要

Mammogram inspection in search of breast tumors is a tough assignment that radiologists must carry out frequently. Therefore, image analysis methods are needed for the detection and delineation of breast tumors, which portray crucial morphological information that will support reliable diagnosis. In this paper, we proposed a conditional Generative Adversarial Network (cGAN) devised to segment a breast tumor within a region of interest (ROI) in a mammogram. The generative network learns to recognize the tumor area and to create the binary mask that outlines it. In turn, the adversarial network learns to distinguish between real (ground truth) and synthetic segmentations, thus enforcing the generative network to create binary masks as realistic as possible. The cGAN works well even when the number of training samples are limited. As a consequence, the proposed method outperforms several state-of-the-art approaches. Our working hypothesis is corroborated by diverse segmentation experiments performed on INbreast and a private in-house dataset. The proposed segmentation model, working on an image crop containing the tumor as well as a significant surrounding area of healthy tissue (loose frame ROI), provides a high Dice coefficient and Intersection over Union (IoU) of 94% and 87%, respectively. In addition, a shape descriptor based on a Convolutional Neural Network (CNN) is proposed to classify the generated masks into four tumor shapes: irregular, lobular, oval and round. The proposed shape descriptor was trained on DDSM, since it provides shape ground truth (while the other two datasets does not), yielding an overall accuracy of 80%, which outperforms the current state-of-the-art.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
515完成签到,获得积分10
1秒前
1秒前
1秒前
冷先森EPC完成签到,获得积分10
3秒前
YY完成签到 ,获得积分10
3秒前
huan完成签到,获得积分10
3秒前
4秒前
515发布了新的文献求助10
4秒前
蹦蹦发布了新的文献求助10
5秒前
善良的访冬完成签到,获得积分10
6秒前
啊啊啊发布了新的文献求助10
6秒前
wise111发布了新的文献求助10
6秒前
科研通AI2S应助随机昵称采纳,获得10
7秒前
科研通AI2S应助Leo采纳,获得10
8秒前
10秒前
Cris完成签到,获得积分10
10秒前
谦让寄容完成签到,获得积分10
13秒前
wise111完成签到,获得积分20
13秒前
14秒前
NexusExplorer应助515采纳,获得10
14秒前
蹦蹦完成签到,获得积分10
15秒前
He_L完成签到,获得积分10
16秒前
Leo完成签到,获得积分10
16秒前
如意的小笼包完成签到,获得积分10
18秒前
19秒前
keep完成签到,获得积分10
26秒前
超级李包包完成签到,获得积分10
27秒前
英俊的铭应助lll采纳,获得10
28秒前
30秒前
在水一方应助笨笨芯采纳,获得10
32秒前
33秒前
ljs发布了新的文献求助10
33秒前
34秒前
34秒前
lll发布了新的文献求助10
39秒前
39秒前
黄石发布了新的文献求助10
40秒前
认真的代柔完成签到,获得积分10
40秒前
44秒前
haonanchen完成签到,获得积分10
44秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799143
求助须知:如何正确求助?哪些是违规求助? 3344871
关于积分的说明 10321756
捐赠科研通 3061268
什么是DOI,文献DOI怎么找? 1680172
邀请新用户注册赠送积分活动 806919
科研通“疑难数据库(出版商)”最低求助积分说明 763445