光催化
钒酸铋
材料科学
二氧化钛
三元运算
可见光谱
异质结
载流子
化学工程
罗丹明B
纳米复合材料
催化作用
X射线光电子能谱
纳米技术
光电子学
化学
复合材料
工程类
生物化学
程序设计语言
计算机科学
作者
Heng Zhao,Meryam Zalfani,Chao-Fan Li,Jing Liu,Zhi-Yi Hu,M. Mahdouani,R. Bourguiga,Yu Li,Bao‐Lian Su
标识
DOI:10.1016/j.jcis.2018.12.076
摘要
Ternary zinc oxide/bismuth vanadate/three-dimensional ordered macroporous titanium dioxide (ZnO/BiVO4/3DOM TiO2) heterojuncted nanocomposites with cascade electronic band structures were successfully designed and synthesized for visible light photodegradation of two different molecules: Rhodamine B (RhB) and Tartrazine. The photocatalytic active species have been investigated by using electron scavenger (AgNO3) and hole scavenger (Triethanolamine: TEOA). The band edge positions of each component in tenary nanocomposites have been measured by using photoelectrochemical Mott-Schottky method and valence band XPS (VB-XPS) spectroscopy. Within the heterojunction, charges are favorably and spatially separated through the gradient potential at the interfaces. This largely suppresses the recombination of photogenerated electrons and holes. Furthermore, 3DOM inverse opal structure is beneficial for high diffusion efficiency and highly accessible surface area of reactants and light and multiple scattering for light harvesting. Consequently, these heterojuncted nanocomposites exhibit highly enhanced photocatalytic performance compared with pure BiVO4 nanostructure, and binary BiVO4/3DOM TiO2, ZnO/BiVO4 nanocomposites. A detailed mechanism of charge transfer is proposed for these ternary ZnO/BiVO4/3DOM TiO2 nanocomposites on the basis of a large series of spectroscopic and photocatalytic results. Our work demonstrates clearly that coupling multicomponent semiconductors with different energy levels of conduction and valence bands can significantly increase the photogenerated charge carriers through the efficient charge separation across their multiple interfaces. This work gives some new ideas on developing new visible light responsive nanocomposites for highly efficient solar energy utilization.
科研通智能强力驱动
Strongly Powered by AbleSci AI