线粒体生物发生
线粒体
甲基化
精氨酸
生物发生
细胞生物学
生物
化学
生物化学
基因
氨基酸
作者
Weiwei Yan,Yun‐Liu Liang,Qixiang Zhang,Di Wang,Mingzhu Lei,Weiping Jia,Xianghuo He,Qun‐Ying Lei,Yiping Wang
出处
期刊:EMBO Reports
[Springer Nature]
日期:2018-11-12
卷期号:19 (12)
被引量:76
标识
DOI:10.15252/embr.201846377
摘要
Sirtuins (SIRTs) are a class of lysine deacylases that regulate cellular metabolism and energy homeostasis. Although sirtuins have been proposed to function in nutrient sensing and signaling, the underlying mechanism remains elusive. SIRT7, a histone H3K18-specific deacetylase, epigenetically controls mitochondria biogenesis, ribosomal biosynthesis, and DNA repair. Here, we report that SIRT7 is methylated at arginine 388 (R388), which inhibits its H3K18 deacetylase activity. Protein arginine methyltransferase 6 (PRMT6) directly interacts with and methylates SIRT7 at R388 in vitro and in vivo R388 methylation suppresses the H3K18 deacetylase activity of SIRT7 without modulating its subcellular localization. PRMT6-induced H3K18 hyperacetylation at SIRT7-target gene promoter epigenetically promotes mitochondria biogenesis and maintains mitochondria respiration. Moreover, high glucose enhances R388 methylation in mouse fibroblasts and liver tissue. PRMT6 signals glucose availability to SIRT7 in an AMPK-dependent manner. AMPK induces R388 hypomethylation by disrupting the association between PRMT6 and SIRT7. Together, PRMT6-induced arginine methylation of SIRT7 coordinates glucose availability with mitochondria biogenesis to maintain energy homeostasis. Our study uncovers the regulatory role of SIRT7 arginine methylation in glucose sensing and mitochondria biogenesis.
科研通智能强力驱动
Strongly Powered by AbleSci AI