XGBoost Model for Chronic Kidney Disease Diagnosis

肾脏疾病 特征选择 灵敏度(控制系统) 计算机科学 人工智能 背景(考古学) 人口 机器学习 可靠性(半导体) 选择(遗传算法) 数据挖掘 医学 地理 工程类 内科学 环境卫生 物理 功率(物理) 考古 量子力学 电子工程
作者
Adeola Ogunleye,Qing‐Guo Wang
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:17 (6): 2131-2140 被引量:716
标识
DOI:10.1109/tcbb.2019.2911071
摘要

Chronic Kidney Disease (CKD) is a menace that is affecting 10 percent of the world population and 15 percent of the South African population. The early and cheap diagnosis of this disease with accuracy and reliability will save 20,000 lives in South Africa per year. Scientists are developing smart solutions with Artificial Intelligence (AI). In this paper, several typical and recent AI algorithms are studied in the context of CKD and the extreme gradient boosting (XGBoost) is chosen as our base model for its high performance. Then, the model is optimized and the optimal full model trained on all the features achieves a testing accuracy, sensitivity, and specificity of 1.000, 1.000, and 1.000, respectively. Note that, to cover the widest range of people, the time and monetary costs of CKD diagnosis have to be minimized with fewest patient tests. Thus, the reduced model using fewer features is desirable while it should still maintain high performance. To this end, the set-theory based rule is presented which combines a few feature selection methods with their collective strengths. The reduced model using about a half of the original full features performs better than the models based on individual feature selection methods and achieves accuracy, sensitivity and specificity, of 1.000, 1.000, and 1.000, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
平淡浩宇发布了新的文献求助30
刚刚
1秒前
1秒前
研友_VZG7GZ应助takumi采纳,获得10
2秒前
文艺的懿完成签到,获得积分10
3秒前
无语的夜春完成签到,获得积分10
3秒前
lxq发布了新的文献求助10
4秒前
4秒前
4秒前
5秒前
6秒前
6秒前
7秒前
JamesPei应助机灵的春天采纳,获得10
8秒前
9秒前
9秒前
10秒前
如意小熊猫完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
11秒前
NoNoQ发布了新的文献求助10
12秒前
寒鸦浮水发布了新的文献求助30
12秒前
8R60d8应助儒雅的山河采纳,获得10
12秒前
曾阿牛发布了新的文献求助10
13秒前
14秒前
Lucas应助聪慧的从丹采纳,获得10
15秒前
我是老大应助予我渡北川采纳,获得10
15秒前
15秒前
16秒前
pinging完成签到,获得积分10
17秒前
weixiao发布了新的文献求助10
17秒前
ding应助靓丽孤容采纳,获得10
18秒前
18秒前
ugk完成签到,获得积分10
19秒前
聂璐燕发布了新的文献求助10
20秒前
20秒前
20秒前
momo完成签到,获得积分10
20秒前
我的小伙伴给我的小伙伴的求助进行了留言
21秒前
BINGBING1230发布了新的文献求助10
22秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5474258
求助须知:如何正确求助?哪些是违规求助? 4576037
关于积分的说明 14356246
捐赠科研通 4503903
什么是DOI,文献DOI怎么找? 2467852
邀请新用户注册赠送积分活动 1455603
关于科研通互助平台的介绍 1429618