Lightweight and computationally faster Hypermetropic Convolutional Neural Network for small size object detection

卷积神经网络 计算机科学 目标检测 对象(语法) 人工智能 深度学习 人工神经网络 视觉对象识别的认知神经科学 模式识别(心理学) 计算机视觉
作者
Amudhan A.N.,Sudheer A.P.
出处
期刊:Image and Vision Computing [Elsevier BV]
卷期号:119: 104396-104396 被引量:31
标识
DOI:10.1016/j.imavis.2022.104396
摘要

Object detection has been an active area of research over the past two decades. The complexity of detecting an object increases with the increase in object speed and decrease in object size. Similar scenarios are observed in sports video analysis, vision systems of robots, driverless cars and much more. This led to the need for an efficient neural network that can detect small size objects. Further, most of the real-time applications use single board computers such as Jetson Nano, TX2, Xavier, Raspberry Pi and the like. The state-of-the-art of Deep Learning models such as YOLOv4, v3, YOLOR, YOLOX and SSD show poor run-time performance on these devices. Their lighter versions YOLOv3-tiny, YOLOv4-tiny and YOLOX-nano run nearly at 24 frames per second (fps) on Jetson Nano; however, their detection accuracy on small-sized objects is unsatisfactory. This paper focuses on developing a computationally lighter Convolutional Neural network(CNN) to detect small-sized objects efficiently. A novel hypermetropic CNN was developed to meet the above requirements. The improvement in detection is made by extracting more features from the shallow layers and transferring low-level features to the deeper layers. The network is hypermetropic because it performs well on distant objects and lags on nearby objects. The proposed model's performance is compared with the state-of-the-art models on various public datasets such as the VEDAI dataset, Visdrone dataset, and a few classes from the MS COCO and OID dataset. The proposed model shows impressive improvements in detecting small-size objects, and a 32% increase in the fps is observed on Jetson Nano. • A novel CNN architecture to detect small-sized objects is proposed. • Validation is carried out on various public datasets. • Results show impressive improvements in detection accuracy and real-time performance. • It is lighter, smaller and has reduced training time than the state-of-the-art models. • It is suitable for use in any single-board computer and platforms devoid of GPUs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jin完成签到,获得积分10
刚刚
浮游应助littlepuppy采纳,获得10
刚刚
时肆万发布了新的文献求助10
1秒前
1秒前
2秒前
2秒前
冉柒发布了新的文献求助10
2秒前
Sara发布了新的文献求助10
3秒前
qjw发布了新的文献求助10
3秒前
3秒前
烂漫的新之完成签到,获得积分10
4秒前
小二郎应助ycy采纳,获得10
5秒前
5秒前
Orange应助梦追阳采纳,获得10
6秒前
脑洞疼应助健忘白易采纳,获得30
6秒前
天天快乐应助巴拉巴拉采纳,获得10
6秒前
栗栗栗知完成签到,获得积分20
7秒前
十七完成签到 ,获得积分10
7秒前
三余发布了新的文献求助10
7秒前
彭于晏应助吉吉采纳,获得10
7秒前
7秒前
7秒前
8秒前
nana发布了新的文献求助10
8秒前
Hello应助李兴邦采纳,获得10
8秒前
樊小雾完成签到,获得积分10
8秒前
8秒前
8秒前
qjw完成签到,获得积分10
8秒前
xixi完成签到,获得积分10
9秒前
yanchen完成签到,获得积分10
9秒前
9秒前
净欣完成签到,获得积分10
9秒前
健康的往事完成签到,获得积分10
10秒前
abb发布了新的文献求助10
10秒前
在水一方应助无敌大滨州采纳,获得10
10秒前
10秒前
哈基米德举报顾阁求助涉嫌违规
10秒前
11秒前
科研通AI5应助yaorongxia采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Refractory Castable Engineering 400
Modern Britain, 1750 to the Present (求助第2版!!!) 400
Social work values and ethics (6th ed.) 360
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5180892
求助须知:如何正确求助?哪些是违规求助? 4368211
关于积分的说明 13601529
捐赠科研通 4218953
什么是DOI,文献DOI怎么找? 2313916
邀请新用户注册赠送积分活动 1312663
关于科研通互助平台的介绍 1261281