DeepUCT: complex cascaded deep learning network for improved ultrasound tomography

计算机科学 深度学习 迭代重建 人工智能 卷积神经网络 迭代法 断层摄影术 反问题 算法 特征学习 计算机视觉 数学 光学 物理 数学分析
作者
Sumukha Prasad,Mohamed Almekkawy
标识
DOI:10.1088/1361-6560/ac5296
摘要

Ultrasound computed tomography is an inexpensive and radiation-free medical imaging technique used to quantify the tissue acoustic properties for advanced clinical diagnosis. Image reconstruction in ultrasound tomography is often modeled as an optimization scheme solved by iterative methods like full-waveform inversion. These iterative methods are computationally expensive, while the optimization problem is ill-posed and nonlinear. To address this problem, we propose to use deep learning to overcome the computational burden and ill-posedness, and achieve near real-time image reconstruction in ultrasound tomography. We aim to directly learn the mapping from the recorded time-series sensor data to a spatial image of acoustical properties. To accomplish this, we develop a deep learning model using two cascaded convolutional neural networks with an encoder-decoder architecture. We achieve a good representation by first extracting the intermediate mapping-knowledge and later utilizing this knowledge to reconstruct the image. This approach is evaluated on synthetic phantoms where simulated ultrasound data are acquired from a ring of transducers surrounding the region of interest. The measurement data is acquired by forward modeling the wave equation using the k-wave toolbox. Our simulation results demonstrate that our proposed deep-learning method is robust to noise and significantly outperforms the state-of-the-art traditional iterative method both quantitatively and qualitatively. Furthermore, our model takes substantially less computational time than the conventional full-wave inversion method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fengzi完成签到 ,获得积分10
3秒前
he完成签到 ,获得积分10
5秒前
麻辣牛蛙完成签到,获得积分10
7秒前
Derek完成签到,获得积分0
11秒前
onw完成签到,获得积分10
12秒前
爱岗敬业牛马人完成签到 ,获得积分10
14秒前
Herman完成签到 ,获得积分10
16秒前
BBA完成签到 ,获得积分10
16秒前
channing完成签到,获得积分20
17秒前
沉淀完成签到 ,获得积分10
19秒前
华仔应助celine采纳,获得10
23秒前
yefeng完成签到,获得积分10
23秒前
冯梦梦完成签到 ,获得积分10
29秒前
Xpaper完成签到,获得积分10
35秒前
科研通AI5应助科研通管家采纳,获得30
37秒前
鹿璐发布了新的文献求助10
37秒前
37秒前
科研通AI2S应助科研通管家采纳,获得10
37秒前
cavendipeng完成签到,获得积分10
37秒前
科研通AI5应助科研通管家采纳,获得10
37秒前
爆米花应助科研通管家采纳,获得30
37秒前
打打应助科研通管家采纳,获得10
37秒前
科研通AI5应助科研通管家采纳,获得10
37秒前
37秒前
地学韦丰吉司长完成签到,获得积分10
39秒前
Bizibili完成签到,获得积分10
41秒前
完美世界应助婷婷大侠采纳,获得10
41秒前
重要的哈密瓜完成签到 ,获得积分10
41秒前
坦率雁卉完成签到,获得积分10
41秒前
Ahha完成签到 ,获得积分10
42秒前
车宇完成签到 ,获得积分10
43秒前
李健应助Orchid采纳,获得10
47秒前
小兔子完成签到,获得积分10
49秒前
Lorain完成签到,获得积分20
49秒前
岂有此李完成签到,获得积分10
54秒前
绿波电龙完成签到,获得积分10
56秒前
可爱的香菇完成签到 ,获得积分10
56秒前
58秒前
xiaoxiao完成签到,获得积分10
58秒前
选课完成签到,获得积分10
58秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
Political Ideologies Their Origins and Impact 13 edition 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801092
求助须知:如何正确求助?哪些是违规求助? 3346581
关于积分的说明 10329787
捐赠科研通 3063102
什么是DOI,文献DOI怎么找? 1681341
邀请新用户注册赠送积分活动 807491
科研通“疑难数据库(出版商)”最低求助积分说明 763726