Deep Learning Classification of Spinal Osteoporotic Compression Fractures on Radiographs using an Adaptation of the Genant Semiquantitative Criteria

医学 骨质疏松症 射线照相术 接收机工作特性 曲线下面积 曲线下面积 骨质疏松性骨折 放射科 人工智能 内科学 计算机科学 骨矿物 药代动力学
作者
Qifei Dong,Gang Luo,Nancy E. Lane,Li‐Yung Lui,Lynn M. Marshall,Deborah M. Kado,Peggy M. Cawthon,Jessica Perry,Sandra K. Johnston,David R. Haynor,Jeffrey G. Jarvik,Nathan Cross
出处
期刊:Academic Radiology [Elsevier BV]
卷期号:29 (12): 1819-1832 被引量:25
标识
DOI:10.1016/j.acra.2022.02.020
摘要

Osteoporosis affects 9% of individuals over 50 in the United States and 200 million women globally. Spinal osteoporotic compression fractures (OCFs), an osteoporosis biomarker, are often incidental and under-reported. Accurate automated opportunistic OCF screening can increase the diagnosis rate and ensure adequate treatment. We aimed to develop a deep learning classifier for OCFs, a critical component of our future automated opportunistic screening tool.The dataset from the Osteoporotic Fractures in Men Study comprised 4461 subjects and 15,524 spine radiographs. This dataset was split by subject: 76.5% training, 8.5% validation, and 15% testing. From the radiographs, 100,409 vertebral bodies were extracted, each assigned one of two labels adapted from the Genant semiquantitative system: moderate to severe fracture vs. normal/trace/mild fracture. GoogLeNet, a deep learning model, was trained to classify the vertebral bodies. The classification threshold on the predicted probability of OCF outputted by GoogLeNet was set to prioritize the positive predictive value (PPV) while balancing it with the sensitivity. Vertebral bodies with the top 0.75% predicted probabilities were classified as moderate to severe fracture.Our model yielded a sensitivity of 59.8%, a PPV of 91.2%, and an F1 score of 0.72. The areas under the receiver operating characteristic curve (AUC-ROC) and the precision-recall curve were 0.99 and 0.82, respectively.Our model classified vertebral bodies with an AUC-ROC of 0.99, providing a critical component for our future automated opportunistic screening tool. This could lead to earlier detection and treatment of OCFs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小兵发布了新的文献求助10
1秒前
可爱的函函应助zxl采纳,获得10
8秒前
ljl86400完成签到,获得积分10
8秒前
华仔应助小可采纳,获得10
8秒前
B2B发布了新的文献求助50
10秒前
小兵完成签到,获得积分10
15秒前
17秒前
lipel完成签到,获得积分10
21秒前
xiaoxiao发布了新的文献求助10
21秒前
ss应助活力的尔蓉采纳,获得10
24秒前
X先生完成签到 ,获得积分10
28秒前
CipherSage应助坚强的翠霜采纳,获得10
29秒前
MaFY完成签到,获得积分10
33秒前
孝顺的觅风完成签到 ,获得积分10
45秒前
45秒前
50秒前
Nancy发布了新的文献求助10
50秒前
51秒前
脑洞疼应助AFong采纳,获得10
52秒前
知更鸟完成签到,获得积分10
55秒前
鱼香发布了新的文献求助10
58秒前
59秒前
小蘑菇应助科研通管家采纳,获得10
59秒前
59秒前
科研通AI5应助科研通管家采纳,获得10
59秒前
北风应助科研通管家采纳,获得10
59秒前
归尘应助科研通管家采纳,获得10
59秒前
归尘应助科研通管家采纳,获得10
59秒前
归尘应助科研通管家采纳,获得10
59秒前
归尘应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助qwertyuoo采纳,获得10
1分钟前
共享精神应助AFong采纳,获得30
1分钟前
pluto应助不知道是谁采纳,获得20
1分钟前
顾矜应助要减肥的香芦采纳,获得10
1分钟前
1分钟前
我怕好时光完成签到,获得积分10
1分钟前
可爱的函函应助AFong采纳,获得10
1分钟前
Steven发布了新的文献求助30
1分钟前
1分钟前
LK8669090完成签到,获得积分10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778670
求助须知:如何正确求助?哪些是违规求助? 3324223
关于积分的说明 10217595
捐赠科研通 3039405
什么是DOI,文献DOI怎么找? 1668081
邀请新用户注册赠送积分活动 798497
科研通“疑难数据库(出版商)”最低求助积分说明 758385