Highway accident detection and classification from live traffic surveillance cameras: a comprehensive dataset and video action recognition benchmarking

计算机科学 人工智能 标杆管理 卷积神经网络 动作识别 自动汇总 动作(物理) 机器学习 模式识别(心理学) 业务 营销 物理 班级(哲学) 量子力学
作者
Landry Kezebou,Victor Oludare,Karen Panetta,James Intrilligator,Sos С. Agaian
标识
DOI:10.1117/12.2618943
摘要

Action Recognition in video is known to be more challenging than image recognition problems. Unlike image recognition models which use 2D convolutional neural blocks, action classification models require additional dimensionality to capture the spatio-temporal information in video sequences. This intrinsically makes video action recognition models computationally intensive and significantly more data-hungry than image recognition counterparts. Unequivocally, existing video datasets such as Kinetics, AVA, Charades, Something-Something, HMDB51, and UFC101 have had tremendous impact on the recently evolving video recognition technologies. Artificial Intelligence models trained on these datasets have largely benefited applications such as behavior monitoring in elderly people, video summarization, and content-based retrieval. However, this growing concept of action recognition has yet to be explored in Intelligent Transportation System (ITS), particularly in vital applications such as incidents detection. This is partly due to the lack of availability of annotated dataset adequate for training models suitable for such direct ITS use cases. In this paper, the concept of video action recognition is explored to tackle the problem of highway incident detection and classification from live surveillance footage. First, a novel dataset - HWID12 (Highway Incidents Detection) dataset is introduced. The HWAD12 consists of 11 distinct highway incidents categories, and one additional category for negative samples representing normal traffic. The proposed dataset also includes 2780+ video segments of 3 to 8 seconds on average each, and 500k+ temporal frames. Next, the baseline for highway accident detection and classification is established with a state-of-the-art action recognition model trained on the proposed HWID12 dataset. Performance benchmarking for 12-class (normal traffic vs 11 accident categories), and 2-class (incident vs normal traffic) settings is performed. This benchmarking reveals a recognition accuracy of up to 88% and 98% for 12-class and 2-class recognition setting, respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
鈮宝完成签到 ,获得积分10
2秒前
科研通AI6应助涅爹采纳,获得10
3秒前
嘟嘟许完成签到,获得积分10
3秒前
微笑仙人掌完成签到 ,获得积分10
4秒前
tonyguo发布了新的文献求助10
5秒前
6秒前
6秒前
小李同学完成签到,获得积分10
7秒前
7秒前
深情安青应助巫沧水云采纳,获得10
7秒前
8秒前
9秒前
10秒前
浮游应助tonyguo采纳,获得10
11秒前
小二郎应助水果采纳,获得10
11秒前
YHX发布了新的文献求助10
12秒前
balabala完成签到,获得积分20
12秒前
繁星发布了新的文献求助10
13秒前
彭于晏应助呆萌安萱采纳,获得10
13秒前
13秒前
小夏饭桶应助勤勤的新星采纳,获得20
13秒前
mmm发布了新的文献求助10
14秒前
共享精神应助坚定的白薇采纳,获得10
16秒前
涅爹完成签到 ,获得积分20
16秒前
an完成签到,获得积分20
17秒前
17秒前
17秒前
Young完成签到,获得积分10
18秒前
爆米花应助Jiygua采纳,获得10
18秒前
早睡一哥完成签到,获得积分10
19秒前
21秒前
111完成签到,获得积分10
21秒前
21秒前
Orange应助小小卖碳翁采纳,获得10
21秒前
小二郎应助科研通管家采纳,获得10
22秒前
冰冰发布了新的文献求助10
22秒前
李爱国应助科研通管家采纳,获得10
22秒前
坦率灵槐应助科研通管家采纳,获得10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 500
Fiction e non fiction: storia, teorie e forme 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5330931
求助须知:如何正确求助?哪些是违规求助? 4470365
关于积分的说明 13913003
捐赠科研通 4363639
什么是DOI,文献DOI怎么找? 2397159
邀请新用户注册赠送积分活动 1390515
关于科研通互助平台的介绍 1361198