Human emotion recognition based on time–frequency analysis of multivariate EEG signal

计算机科学 脑电图 Softmax函数 卷积神经网络 语音识别 残余物 模式识别(心理学) 人工智能 情绪分类 支持向量机 特征提取 多元统计 机器学习 心理学 算法 精神科
作者
V. Padhmashree,Abhijit Bhattacharyya
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:238: 107867-107867 被引量:88
标识
DOI:10.1016/j.knosys.2021.107867
摘要

Understanding the expression of human emotional states plays a prominent role in interactive multimodal interfaces, affective computing, and the healthcare sector. Emotion recognition through electroencephalogram (EEG) signals is a simple, inexpensive, compact, and precise solution. This paper proposes a novel four-stage method for human emotion recognition using multivariate EEG signals. In the first stage, multivariate variational mode decomposition (MVMD) is employed to extract an ensemble of multivariate modulated oscillations (MMOs) from multichannel EEG signals. In the second stage, multivariate time–frequency (TF) images are generated using joint instantaneous amplitude (JIA), and joint instantaneous frequency (JIF) functions computed from the extracted MMOs. In the next stage, deep residual convolutional neural network ResNet-18 is customized to extract hidden features from the TF images. Finally, the classification is performed by the softmax layer. To further evaluate the performance of the model, various machine learning (ML) classifiers are employed. The feasibility and validity of the proposed method are verified using two different public emotion EEG datasets. The experimental results demonstrate that the proposed method outperforms the state-of-the-art emotion recognition methods with the best accuracy of 99.03, 97.59, and 97.75 percent for classifying arousal, dominance, and valence emotions, respectively. Our study reveals that TF-based multivariate EEG signal analysis using a deep residual network achieves superior performance in human emotion recognition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丁牛青发布了新的文献求助100
1秒前
2秒前
FashionBoy应助科研通管家采纳,获得10
4秒前
桐桐应助科研通管家采纳,获得10
4秒前
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
汉堡包应助科研通管家采纳,获得10
4秒前
充电宝应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
所所应助科研通管家采纳,获得10
5秒前
小二郎应助科研通管家采纳,获得10
5秒前
李健应助科研通管家采纳,获得10
5秒前
星辰大海应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
所所应助科研通管家采纳,获得10
5秒前
小墨应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
Hello应助科研通管家采纳,获得10
5秒前
haiyan发布了新的文献求助10
5秒前
充电宝应助科研通管家采纳,获得10
5秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
慕青应助科研通管家采纳,获得10
6秒前
Lucas应助科研通管家采纳,获得10
6秒前
科研助手6应助科研通管家采纳,获得10
6秒前
小墨应助科研通管家采纳,获得10
6秒前
烟花应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
bkagyin应助科研通管家采纳,获得10
6秒前
書生完成签到,获得积分10
8秒前
热情孤丹完成签到,获得积分10
8秒前
9秒前
10秒前
筱筱完成签到,获得积分10
10秒前
12秒前
13秒前
13秒前
珹澈完成签到 ,获得积分10
13秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776240
求助须知:如何正确求助?哪些是违规求助? 3321725
关于积分的说明 10207338
捐赠科研通 3036979
什么是DOI,文献DOI怎么找? 1666499
邀请新用户注册赠送积分活动 797502
科研通“疑难数据库(出版商)”最低求助积分说明 757868