In-situ pressure-induced BiVO4/Bi0.6Y0.4VO4 S-scheme heterojunction for enhanced photocatalytic overall water splitting activity

异质结 材料科学 光催化 钒酸铋 四方晶系 单斜晶系 分解水 纳米棒 煅烧 化学工程 热液循环 表面光电压 光电子学 纳米技术 相(物质) 化学 晶体结构 催化作用 光谱学 结晶学 工程类 物理 量子力学 有机化学 生物化学
作者
Weiqi Guo,Haolin Luo,Zhi Jiang,Wenfeng Shangguan
出处
期刊:Chinese Journal of Catalysis [Elsevier BV]
卷期号:43 (2): 316-328 被引量:43
标识
DOI:10.1016/s1872-2067(21)63846-9
摘要

Step-scheme (S-scheme) heterojunctions in photocatalysts can provide novel and practical insight on promoting photogenerated carrier separation. The latter is critical in controlling the overall efficiency in one-step photoexcitation systems. In this study, a nanosized Bi0.6Y0.4VO4 solid solution was prepared by a coprecipitation method following with hydrothermal or calcination processes. The S-scheme heterojunction was fabricated by in-situ pressure-induced transformations of bismuth vanadate from the tetragonal zircon phase to the monoclinic scheelite phase, which led to the formation of BiVO4 nanoparticles with a diameter of approximately 5 nm on the surface of Bi0.6Y0.4VO4. Bi0.6Y0.4VO4 with S-scheme heterojunctions showed significantly enhanced photocatalytic overall water splitting activity compared with using bare Bi0.6Y0.4VO4. Characterization of the carrier dynamics demonstrated that a superior carrier separation through S-type heterojunctions might have caused the enhanced overall water splitting (OWS) activity. Surface photovoltage spectra and the results of selective photodeposition experiments indicated that the photogenerated holes mainly migrated to the BiVO4 nanoparticles in the heterojunction. This confirmed that the charge transfer route corresponds to an S-scheme rather than a type-II heterojunction mechanism under light illumination. This study presents a facile and efficient strategy to construct S-scheme heterojunctions through a pressure-induced phase transition. The results demonstrated that S-scheme junctions composed of different crystalline phases can boost the carrier separation capacity and eventually improve the photocatalytic OWS activity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
随遇而安给冷酷青枫的求助进行了留言
刚刚
刚刚
拼搏平蓝完成签到 ,获得积分10
1秒前
浩铭完成签到,获得积分10
1秒前
大个应助yuyu采纳,获得10
2秒前
醉熏的伊完成签到,获得积分10
3秒前
可靠从云完成签到 ,获得积分10
3秒前
3秒前
酷炫丹寒完成签到,获得积分10
4秒前
4秒前
大模型应助默默半凡采纳,获得10
4秒前
单纯铃铛完成签到,获得积分20
5秒前
呼呼呼完成签到,获得积分10
6秒前
暴躁的信封完成签到,获得积分10
6秒前
lucky完成签到,获得积分10
6秒前
常大有完成签到,获得积分10
6秒前
Prinpaul完成签到,获得积分10
7秒前
burno1112完成签到,获得积分10
7秒前
懵懂小尉完成签到,获得积分10
8秒前
852应助叶伏天采纳,获得10
8秒前
HC完成签到,获得积分10
9秒前
Prinpaul发布了新的文献求助10
10秒前
10秒前
10秒前
刘稀完成签到,获得积分10
11秒前
郅郅郅完成签到 ,获得积分10
11秒前
张家木完成签到,获得积分10
12秒前
皮皮虾完成签到,获得积分10
12秒前
12秒前
lshao完成签到 ,获得积分10
12秒前
Akim应助介于两石之间采纳,获得30
12秒前
苏苏完成签到,获得积分10
12秒前
自然怀梦完成签到,获得积分10
13秒前
小董不懂完成签到,获得积分10
13秒前
13秒前
红汤加煎蛋完成签到,获得积分10
13秒前
狐狸完成签到,获得积分10
13秒前
默默半凡完成签到,获得积分20
13秒前
zzzz完成签到,获得积分10
13秒前
supertkeb完成签到,获得积分10
14秒前
高分求助中
Handbook of Diagnosis and Treatment of DSM-5-TR Personality Disorders 800
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
建筑材料检测与应用 370
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3830668
求助须知:如何正确求助?哪些是违规求助? 3372971
关于积分的说明 10476375
捐赠科研通 3092950
什么是DOI,文献DOI怎么找? 1702308
邀请新用户注册赠送积分活动 818920
科研通“疑难数据库(出版商)”最低求助积分说明 771153