Machine Learning–Based Models Incorporating Social Determinants of Health vs Traditional Models for Predicting In-Hospital Mortality in Patients With Heart Failure

医学 逻辑回归 心力衰竭 回顾性队列研究 逐步回归 民族 内科学 置信区间 急诊医学 人口学 人类学 社会学
作者
Matthew W. Segar,Jennifer L. Hall,Pardeep S. Jhund,Tiffany M. Powell‐Wiley,Alanna A. Morris,David Kao,Gregg C. Fonarow,Rosalba Hernández,Nasrien E. Ibrahim,Christine Rutan,Ann Marie Návar,Laura Stevens,Ambarish Pandey
出处
期刊:JAMA Cardiology [American Medical Association]
卷期号:7 (8): 844-844 被引量:71
标识
DOI:10.1001/jamacardio.2022.1900
摘要

Traditional models for predicting in-hospital mortality for patients with heart failure (HF) have used logistic regression and do not account for social determinants of health (SDOH).To develop and validate novel machine learning (ML) models for HF mortality that incorporate SDOH.This retrospective study used the data from the Get With The Guidelines-Heart Failure (GWTG-HF) registry to identify HF hospitalizations between January 1, 2010, and December 31, 2020. The study included patients with acute decompensated HF who were hospitalized at the GWTG-HF participating centers during the study period. Data analysis was performed January 6, 2021, to April 26, 2022. External validation was performed in the hospitalization cohort from the Atherosclerosis Risk in Communities (ARIC) study between 2005 and 2014.Random forest-based ML approaches were used to develop race-specific and race-agnostic models for predicting in-hospital mortality. Performance was assessed using C index (discrimination), regression slopes for observed vs predicted mortality rates (calibration), and decision curves for prognostic utility.The training data set included 123 634 hospitalized patients with HF who were enrolled in the GWTG-HF registry (mean [SD] age, 71 [13] years; 58 356 [47.2%] female individuals; 65 278 [52.8%] male individuals. Patients were analyzed in 2 categories: Black (23 453 [19.0%]) and non-Black (2121 [2.1%] Asian; 91 154 [91.0%] White, and 6906 [6.9%] other race and ethnicity). The ML models demonstrated excellent performance in the internal testing subset (n = 82 420) (C statistic, 0.81 for Black patients and 0.82 for non-Black patients) and in the real-world-like cohort with less than 50% missingness on covariates (n = 553 506; C statistic, 0.74 for Black patients and 0.75 for non-Black patients). In the external validation cohort (ARIC registry; n = 1205 Black patients and 2264 non-Black patients), ML models demonstrated high discrimination and adequate calibration (C statistic, 0.79 and 0.80, respectively). Furthermore, the performance of the ML models was superior to the traditional GWTG-HF risk score model (C index, 0.69 for both race groups) and other rederived logistic regression models using race as a covariate. The performance of the ML models was identical using the race-specific and race-agnostic approaches in the GWTG-HF and external validation cohorts. In the GWTG-HF cohort, the addition of zip code-level SDOH parameters to the ML model with clinical covariates only was associated with better discrimination, prognostic utility (assessed using decision curves), and model reclassification metrics in Black patients (net reclassification improvement, 0.22 [95% CI, 0.14-0.30]; P < .001) but not in non-Black patients.ML models for HF mortality demonstrated superior performance to the traditional and rederived logistic regressions models using race as a covariate. The addition of SDOH parameters improved the prognostic utility of prediction models in Black patients but not non-Black patients in the GWTG-HF registry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Greta完成签到,获得积分10
1秒前
2秒前
CodeCraft应助阿巴采纳,获得10
2秒前
汉堡包应助阿巴采纳,获得10
2秒前
可爱的函函应助阿巴采纳,获得10
2秒前
爆米花应助qwer采纳,获得10
5秒前
111发布了新的文献求助10
6秒前
6秒前
7秒前
8秒前
风清扬应助willow采纳,获得10
11秒前
浮游应助Abc123采纳,获得30
12秒前
琳霖临临麟完成签到,获得积分10
12秒前
摆渡人发布了新的文献求助10
12秒前
12秒前
July发布了新的文献求助10
13秒前
13秒前
anny.white完成签到,获得积分10
17秒前
满意书包发布了新的文献求助10
18秒前
18秒前
wang完成签到,获得积分10
19秒前
小白聚酯完成签到,获得积分10
19秒前
Daileo完成签到,获得积分10
22秒前
wang发布了新的文献求助10
23秒前
兴奋的故事完成签到,获得积分10
23秒前
24秒前
二分三分完成签到,获得积分10
30秒前
30秒前
31秒前
Hello应助科研通管家采纳,获得10
33秒前
木子李发布了新的文献求助20
34秒前
廖昱霖完成签到,获得积分10
34秒前
程院发布了新的文献求助10
34秒前
35秒前
YCH完成签到,获得积分10
35秒前
Daileo发布了新的文献求助10
35秒前
37秒前
脑洞疼应助互助遵法尚德采纳,获得10
38秒前
不知完成签到 ,获得积分10
40秒前
41秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Beauty and Innovation in La Machine Chinoise: Falla, Debussy, Ravel, Roussel 1000
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 1000
An overview of orchard cover crop management 800
基于3um sOl硅光平台的集成发射芯片关键器件研究 500
Educational Research: Planning, Conducting, and Evaluating Quantitative and Qualitative Research 460
Research Handbook on Law and Political Economy Second Edition 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4801742
求助须知:如何正确求助?哪些是违规求助? 4119858
关于积分的说明 12745461
捐赠科研通 3851754
什么是DOI,文献DOI怎么找? 2121546
邀请新用户注册赠送积分活动 1143661
关于科研通互助平台的介绍 1033813