A Novel Machine Learning Approach for Severity Classification of Diabetic Foot Complications Using Thermogram Images

糖尿病足 人工智能 卷积神经网络 聚类分析 模式识别(心理学) 稳健性(进化) 脚(韵律) 糖尿病 医学 计算机科学 深度学习 机器学习 基因 内分泌学 哲学 生物化学 化学 语言学
作者
Amith Khandakar,Muhammad E. H. Chowdhury,Mamun Bin Ibne Reaz,Sawal Hamid Md Ali,Serkan Kıranyaz,Tawsifur Rahman,Moajjem Hossain Chowdhury,Mohamed Arselene Ayari,Rashad Alfkey,Ahmad Ashrif A. Bakar,Rayaz A. Malik,Anwarul Hasan
出处
期刊:Sensors [MDPI AG]
卷期号:22 (11): 4249-4249 被引量:54
标识
DOI:10.3390/s22114249
摘要

Diabetes mellitus (DM) is one of the most prevalent diseases in the world, and is correlated to a high index of mortality. One of its major complications is diabetic foot, leading to plantar ulcers, amputation, and death. Several studies report that a thermogram helps to detect changes in the plantar temperature of the foot, which may lead to a higher risk of ulceration. However, in diabetic patients, the distribution of plantar temperature does not follow a standard pattern, thereby making it difficult to quantify the changes. The abnormal temperature distribution in infrared (IR) foot thermogram images can be used for the early detection of diabetic foot before ulceration to avoid complications. There is no machine learning-based technique reported in the literature to classify these thermograms based on the severity of diabetic foot complications. This paper uses an available labeled diabetic thermogram dataset and uses the k-mean clustering technique to cluster the severity risk of diabetic foot ulcers using an unsupervised approach. Using the plantar foot temperature, the new clustered dataset is verified by expert medical doctors in terms of risk for the development of foot ulcers. The newly labeled dataset is then investigated in terms of robustness to be classified by any machine learning network. Classical machine learning algorithms with feature engineering and a convolutional neural network (CNN) with image-enhancement techniques are investigated to provide the best-performing network in classifying thermograms based on severity. It is found that the popular VGG 19 CNN model shows an accuracy, precision, sensitivity, F1-score, and specificity of 95.08%, 95.08%, 95.09%, 95.08%, and 97.2%, respectively, in the stratification of severity. A stacking classifier is proposed using extracted features of the thermogram, which is created using the trained gradient boost classifier, XGBoost classifier, and random forest classifier. This provides a comparable performance of 94.47%, 94.45%, 94.47%, 94.43%, and 93.25% for accuracy, precision, sensitivity, F1-score, and specificity, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
guocan完成签到,获得积分20
2秒前
2秒前
3秒前
3秒前
无奈雪珊完成签到,获得积分10
3秒前
4秒前
Joshua发布了新的文献求助10
4秒前
AAAA发布了新的文献求助10
4秒前
6秒前
6秒前
科研通AI2S应助健壮的香蕉采纳,获得10
6秒前
wanci应助zz采纳,获得10
6秒前
7秒前
能干富发布了新的文献求助10
7秒前
A1214完成签到,获得积分10
7秒前
焦米棍发布了新的文献求助20
8秒前
Jmax完成签到,获得积分10
9秒前
李楠完成签到 ,获得积分10
9秒前
9秒前
想发顶刊完成签到,获得积分20
9秒前
XIN完成签到,获得积分10
10秒前
阿屁屁猪发布了新的文献求助10
11秒前
beyoo完成签到,获得积分10
11秒前
终梦应助失眠呆呆鱼采纳,获得30
11秒前
李j1完成签到,获得积分10
11秒前
爆米花应助ZhangYusheng采纳,获得10
12秒前
13秒前
李楠关注了科研通微信公众号
13秒前
prince应助舒心的秋荷采纳,获得50
14秒前
田様应助唠叨的白曼采纳,获得10
15秒前
浮游应助彭颖采纳,获得10
15秒前
想发顶刊发布了新的文献求助10
15秒前
dd发布了新的文献求助30
17秒前
17秒前
17秒前
鸡米花完成签到,获得积分10
17秒前
17秒前
乐乐应助阿屁屁猪采纳,获得10
17秒前
Lucas应助yugto采纳,获得10
18秒前
gulugulu发布了新的文献求助10
19秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5344166
求助须知:如何正确求助?哪些是违规求助? 4479497
关于积分的说明 13943155
捐赠科研通 4376560
什么是DOI,文献DOI怎么找? 2404847
邀请新用户注册赠送积分活动 1397207
关于科研通互助平台的介绍 1369579