生物膜
化学
胞外聚合物
微生物
细菌
新陈代谢
生物化学
微生物代谢
食品科学
生物物理学
微生物学
生物
遗传学
作者
Weihua Li,Muhammad Saboor Siddique,Nigel Graham,Wenzheng Yu
标识
DOI:10.1021/acs.est.2c01243
摘要
A biofilm has a significant effect on water treatment processes. Currently, there is a lack of knowledge about the effect of temperature on the biofilm structure in water treatment processes. In this study, a gravity-driven membrane ultrafiltration system was operated with river feedwater at two temperatures ("low", 4 °C; "high", 25 °C) to explore the biofilm structure and transformation mechanism. The results showed that the difference in dissolved oxygen concentration might be one of the main factors regulating the structural components of the biofilm. A denser biofilm formation and reduced flux were observed at the lower temperature. The linoleic acid metabolism was significantly inhibited at low temperature, resulting in enhanced pyrimidine metabolism by Na+ accumulation. In addition, the biofilm at low temperature had a higher proportion of the metabolites of lipids and lipid-like molecules (11.25%), organic acids and derivatives (10.83%), nucleosides, nucleotides, and analogues (7.083%), and organoheterocyclic compounds (6.66%). These small molecules secrete more polysaccharides having C═O and O═C-O functional groups, which intensified the resistance of the biofilm. Furthermore, the upregulation pathway of pyrimidine metabolism also increased the risk of urea accumulation at low temperature. Limnohabitans, Deinococcus, Diaphorobacter, Flavobacterium, and Pseudomonas were identified as the principal microorganisms involved in this metabolic transformation.
科研通智能强力驱动
Strongly Powered by AbleSci AI