嵌入
透视图(图形)
计算机科学
人工智能
模式识别(心理学)
张量(固有定义)
特征(语言学)
代表(政治)
图像(数学)
关系数据库
相关性
典型相关
弹丸
特征提取
机器学习
数据挖掘
数学
哲学
政治
语言学
有机化学
化学
法学
纯数学
政治学
几何学
作者
Dahyun Kang,Heeseung Kwon,Juhong Min,Minsu Cho
标识
DOI:10.1109/iccv48922.2021.00870
摘要
We propose to address the problem of few-shot classification by meta-learning "what to observe" and "where to attend" in a relational perspective. Our method lever-ages relational patterns within and between images via self-correlational representation (SCR) and cross-correlational attention (CCA). Within each image, the SCR module transforms a base feature map into a self-correlation tensor and learns to extract structural patterns from the tensor. Between the images, the CCA module computes cross-correlation between two image representations and learns to produce co-attention between them. Our Relational Embedding Network (RENet) combines the two relational modules to learn relational embedding in an end-to-end manner. In experimental evaluation, it achieves consistent improvements over state-of-the-art methods on four widely used few-shot classification benchmarks of miniImageNet, tieredImageNet, CUB-200-2011, and CIFAR-FS.
科研通智能强力驱动
Strongly Powered by AbleSci AI