FAIR1M: A benchmark dataset for fine-grained object recognition in high-resolution remote sensing imagery

计算机科学 水准点(测量) 目标检测 人工智能 对象(语法) 深度学习 比例(比率) 遥感 最小边界框 跳跃式监视 模式识别(心理学) 计算机视觉 图像(数学) 地理 地图学
作者
Xian Sun,Peijin Wang,Zhiyuan Yan,Feng Xu,Ruiping Wang,Wenhui Diao,Jin Chen,Jihao Li,Yingchao Feng,Tao Xu,Martin Weinmann,Stefan Hinz,Cheng Wang,Kun Fu
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:184: 116-130 被引量:181
标识
DOI:10.1016/j.isprsjprs.2021.12.004
摘要

With the rapid development of deep learning, many deep learning-based approaches have made great achievements in object detection tasks. It is generally known that deep learning is a data-driven approach. Data directly impact the performance of object detectors to some extent. Although existing datasets include common objects in remote sensing images, they still have some scale, category, and image limitations. Therefore, there is a strong requirement for establishing a large-scale object detection benchmark for high-resolution remote sensing images. In this paper, we propose a novel benchmark dataset with more than 1 million instances and more than 40,000 images for Fine-grAined object recognItion in high-Resolution remote sensing imagery which is named as FAIR1M. We collected remote sensing images with a resolution of 0.3 m to 0.8 m from different platforms, which are spread across many countries and regions. All objects in the FAIR1M dataset are annotated with respect to 5 categories and 37 subcategories by oriented bounding boxes. Compared with existing detection datasets that are dedicated to object detection, the FAIR1M dataset has 4 particular characteristics: (1) it is much larger than other existing object detection datasets both in terms of the number of instances and the number of images, (2) it provides richer fine-grained category information for objects in remote sensing images, (3) it contains geographic information such as latitude, longitude and resolution attributes, and (4) it provides better image quality due to the use of a careful data cleaning procedure. Based on the FAIR1M dataset, we propose three fine-grained object detection and recognition tasks. Moreover, we evaluate several state-of-the-art approaches to establish baselines for future research. Experimental results indicate that the FAIR1M dataset effectively represents real remote sensing applications and is quite challenging for existing methods. Considering the fine-grained characteristics, we improve the evaluation metric and introduce the idea of hierarchy detection into the algorithms. We believe that the FAIR1M dataset will contribute to the earth observation community via fine-grained object detection in large-scale real-world scenes. FAIR1M Website: http://gaofen-challenge.com/.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助紫苏采纳,获得50
刚刚
景行行止发布了新的文献求助10
1秒前
1秒前
Marciu33完成签到,获得积分10
2秒前
3秒前
4秒前
科研通AI5应助tobasco采纳,获得10
4秒前
碧蓝的凝竹完成签到,获得积分10
4秒前
4秒前
南暮发布了新的文献求助10
6秒前
7秒前
可爱的函函应助ylq采纳,获得10
8秒前
9秒前
9秒前
Rg发布了新的文献求助10
9秒前
佟佳霖发布了新的文献求助50
9秒前
10秒前
还单身的香菇完成签到,获得积分10
10秒前
10秒前
Yancy发布了新的文献求助30
10秒前
过于傻逼发布了新的文献求助10
11秒前
YueLongZ完成签到,获得积分10
11秒前
学习通发布了新的文献求助10
11秒前
自然凝竹完成签到,获得积分10
12秒前
12秒前
13秒前
啊啊啊发布了新的文献求助10
13秒前
科研通AI5应助杜杜采纳,获得10
13秒前
南暮完成签到,获得积分10
13秒前
14秒前
哆啦A梦完成签到,获得积分10
14秒前
SYLH应助古月采纳,获得10
14秒前
14秒前
DEEP完成签到,获得积分10
15秒前
17秒前
残幻应助albertxin采纳,获得10
18秒前
徐rl发布了新的文献求助10
18秒前
22发布了新的文献求助200
18秒前
18秒前
18秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3814803
求助须知:如何正确求助?哪些是违规求助? 3358942
关于积分的说明 10398561
捐赠科研通 3076361
什么是DOI,文献DOI怎么找? 1689802
邀请新用户注册赠送积分活动 813273
科研通“疑难数据库(出版商)”最低求助积分说明 767599