Cascaded Multi-Task Road Extraction Network for Road Surface, Centerline, and Edge Extraction

计算机科学 分割 路面 GSM演进的增强数据速率 人工智能 特征提取 深度学习 北京 数据挖掘 计算机视觉 模式识别(心理学) 地理 工程类 土木工程 考古 中国
作者
Xiaoyan Lu,Yanfei Zhong,Zhuo Zheng,Dingyuan Chen,Yu Su,Ailong Ma,Liangpei Zhang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-14 被引量:33
标识
DOI:10.1109/tgrs.2022.3165817
摘要

Road extraction from very high-resolution (VHR) remote sensing imagery remains a huge challenge, due to the shadows and occlusions of trees and buildings. Such complex backgrounds result in deep networks often producing fragmented roads with poor connectivity. Road extraction has three typical tasks: road surface segmentation (SS), centerline extraction (CE), and edge detection (ED), which are conducted in a wide range of real applications. Also, the three tasks have a symbiotic relationship, i.e., the road SS determines the location of the centerline and edges, and the CE and ED can allow the generation of more continuous road surfaces. However, most of the previous works have completed these three tasks separately, without exploiting the symbiotic relationship between them to boost the road connectivity. In this article, in order to improve road connectivity, a cascaded multitask (CasMT) road extraction framework for simultaneously extracting the road surface, centerline, and edges is proposed. In the proposed framework, topology-aware learning is applied to capture the long-distance topological relationships, and hard example mining (HEM) loss is employed to focus more on hard samples, to further enhance the road completeness. Extensive experiments were conducted on the DeepGlobe road dataset and a large-scale road dataset (called the LSCC dataset) from the three Chinese cities of Beijing, Shanghai, and Wuhan. The experimental results obtained on the public DeepGlobe dataset demonstrate that the proposed CasMT framework can significantly outperform the current state-of-the-art method. Moreover, the generalization capability of the model was verified on the LSCC dataset, where the proposed CasMT framework achieved the best performance in the average path length similarity (APLS) road topology metric, which further confirms the superiority of the proposed framework.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zipi完成签到,获得积分10
1秒前
xsq发布了新的文献求助10
2秒前
5秒前
YanK发布了新的文献求助10
6秒前
6秒前
Amber完成签到,获得积分10
7秒前
8秒前
8秒前
淡然的冰海完成签到,获得积分10
8秒前
1中蓝发布了新的文献求助10
9秒前
11秒前
zzz完成签到,获得积分10
11秒前
YanK完成签到,获得积分20
11秒前
Synan完成签到,获得积分10
12秒前
dll发布了新的文献求助10
12秒前
丰知然应助YanK采纳,获得10
13秒前
英俊的铭应助YanK采纳,获得10
13秒前
hnsun21发布了新的文献求助30
13秒前
地瓜叶完成签到,获得积分10
13秒前
13秒前
昔年完成签到,获得积分10
15秒前
小蘑菇应助xsq采纳,获得10
16秒前
认真的裙子完成签到,获得积分10
16秒前
酷波er应助机智靖雁采纳,获得10
17秒前
17秒前
无问西东发布了新的文献求助10
18秒前
19秒前
共享精神应助温柔可乐采纳,获得10
19秒前
菜鸡5号完成签到,获得积分10
20秒前
长门有希子完成签到,获得积分10
21秒前
打打应助火星上的觅山采纳,获得10
22秒前
科研通AI5应助天气不错呀采纳,获得10
23秒前
beichen发布了新的文献求助10
23秒前
六沉完成签到,获得积分10
24秒前
葵花籽完成签到,获得积分10
25秒前
科研通AI5应助zzznznnn采纳,获得10
26秒前
小伙子完成签到,获得积分10
26秒前
26秒前
27秒前
28秒前
高分求助中
Worked Bone, Antler, Ivory, and Keratinous Materials 1000
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Limes XXIII Sonderband 4 / II Proceedings of the 23rd International Congress of Roman Frontier Studies Ingolstadt 2015 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3829269
求助须知:如何正确求助?哪些是违规求助? 3371975
关于积分的说明 10470047
捐赠科研通 3091557
什么是DOI,文献DOI怎么找? 1701181
邀请新用户注册赠送积分活动 818284
科研通“疑难数据库(出版商)”最低求助积分说明 770765